
23

Interpreting Deep Learning-based Vulnerability Detector

Predictions Based on Heuristic Searching

DEQING ZOU and YAWEI ZHU, Huazhong University of Science and Technology, P.R. China

SHOUHUAI XU, University of Texas at San Antonio, USA

ZHEN LI, Hebei University, P.R. China
HAI JIN and HENGKAI YE, Huazhong University of Science and Technology, P.R. China

Detecting software vulnerabilities is an important problem and a recent development in tackling the problem
is the use of deep learning models to detect software vulnerabilities. While effective, it is hard to explain
why a deep learning model predicts a piece of code as vulnerable or not because of the black-box nature of
deep learning models. Indeed, the interpretability of deep learning models is a daunting open problem. In
this article, we make a significant step toward tackling the interpretability of deep learning model in vul-
nerability detection. Specifically, we introduce a high-fidelity explanation framework, which aims to identify
a small number of tokens that make significant contributions to a detector’s prediction with respect to an
example. Systematic experiments show that the framework indeed has a higher fidelity than existing meth-
ods, especially when features are not independent of each other (which often occurs in the real world). In
particular, the framework can produce some vulnerability rules that can be understood by domain experts
for accepting a detector’s outputs (i.e., true positives) or rejecting a detector’s outputs (i.e., false-positives and

D. Zou and Y. Zhu contributed equally to this research.
D. Zou also with Shenzhen Huazhong University of Science and Technology Research Institute.
The authors affiliated with Huazhong University of Science and Technology and Hebei University were supported in part
by the National Key Research and Development Plan of China under Grant No. 2017YFB0802205, in part by the National
Natural Science Foundation of China under Grants No. U1936211 and No. 61802106, in part by the Natural Science Founda-
tion of Hebei Province under Grant No. F2020201016, and in part by the Shenzhen Fundamental Research Program under
Grant No. JCYJ20170413114215614. Shouhuai Xu was supported in part by National Science Foundation under Grants No.
1814825 and No. 1736209. The opinions expressed in the article are those of the authors’ and do not reflect the funding
agencies’ policies in any sense.
Authors’ addresses: D. Zou is with National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab, Big Data Security Engineering Research Center,
School of Cyber Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, China, and also
with Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, P.R. China; email:
deqingzou@hust.edu.cn. Y. Zhu, and H. Ye are with National Engineering Research Center for Big Data Technology and
System, Services Computing Technology and System Lab, Cluster and Grid Computing Lab, Big Data Security Engineer-
ing Research Center, School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan
430074, P.R. China; emails: {yokisir, michaelye}@hust.edu.cn. S. Xu is with the Department of Computer Science, Univer-
sity of Texas at San Antonio, San Antonio, TX 78249, USA; email: shxu@cs.utsa.edu. Z. Li (corresponding author) is with
School of Cyber Security and Computer, Hebei University, Baoding 071002, P.R. China; email: lizhenhbu@gmail.com. H. Jin
is with National Engineering Research Center for Big Data Technology and System, Services Computing Technology and
System Lab, Cluster and Grid Computing Lab, Big Data Security Engineering Research Center, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; email: hjin@hust.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1049-331X/2021/03-ART23 $15.00
https://doi.org/10.1145/3429444

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3429444

23:2 D. Zou et al.

false-negatives). We also discuss limitations of the present study, which indicate interesting open problems
for future research.

CCS Concepts: • Security and privacy → Software security engineering;

Additional KeyWords and Phrases: Explainable AI, deep learning, vulnerability detection, sensitivity analysis

ACM Reference format:

Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. 2021. Interpreting Deep Learning-
based Vulnerability Detector Predictions Based on Heuristic Searching. ACM Trans. Softw. Eng. Methodol. 30,
2, Article 23 (March 2021), 31 pages.
https://doi.org/10.1145/3429444

1 INTRODUCTION

Static analysis is an important approach to detecting software vulnerabilities, which are the main
cause of cyberattacks. In the early days, this approach primarily leverages vulnerability detection
rules that are written by domain experts. A recent development is to leverage machine learning,
especially deep learning, techniques to detect software vulnerabilities. The motivation behind this
paradigm-shifting can be appreciated from two perspectives. On the one hand, deep learning has
“defeated” humans in multiple application domains (e.g., image recognition and Go [33, 41]), hint-
ing that deep learning could be leveraged to achieve higher effectiveness than the vulnerability
detection rules written by domain experts. On the other hand, deep learning could substantially
reduce, if not completely eliminating, the tedious work imposed on domain experts in writing
vulnerability-detection rules. The state-of-the-art is that static analysis leveraging deep learning
can indeed achieve higher effectiveness thanwhat can be achieved by using domain expert-written
rules, while reducing laborious manual work imposed on domain experts [13, 15, 26–28, 40, 53, 54].
While effective, deep learning has the drawback that it does not tell why it classifies an exam-

ple as vulnerable or not. In contrast, this kind of interpretability can be relatively easily derived
from vulnerability-detection rules written by domain experts. Moreover, deep learning does not
tell which features are more important than others when making a particular prediction. As a con-
sequence, even domain experts cannot tell what knowledge is learned by a deep learning-based
vulnerability detector. Deep learning interpretability is an important research topic, because it can
offer deep insights into the cause, detection, and fix of software vulnerabilities. For example, know-
ing what the root cause of a class of vulnerabilities is would suggest effective countermeasures for
preventing patching vulnerabilities [39].
To the best of our knowledge, the interpretability of deep learning-based vulnerability detection

has not been considered in the literature. This is true despite that deep learning interpretability
has been investigated in other application domains. Indeed, there have been three approaches
to addressing interpretability in other application domains. The hidden neuron analysis approach
aims to identify the importance of features by looking into the model in question (e.g., its hidden-
layer outputs and gradient values) [7, 24, 42, 43, 49, 52]. But lots of them are model-dependent
(relies on the model structure) so only effective for a certain type of model. The model simulation
approach aims to use a global surrogate model (e.g., decision tree) to approximate and interpret
a complex target model. Nevertheless, it is difficult to measure the behavioral gap between
the surrogate model and the original interpreted model, also impossible to guarantee that the
knowledge acquired by the two models is consistent [3, 6, 9, 11, 14, 23, 51]. The local interpretation
approach aims to consider the local decision boundary with respect to a specific example, typically
using some sensitivity analysis and local approximation methods, while assuming features are

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

https://doi.org/10.1145/3429444

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:3

Fig. 1. A brief review of deep learning-based vulnerability detection systems [26, 27].

independent of each other [16, 20, 22, 25, 29, 31, 38]. However, it is not clear if these existing
approaches can be applied to interpret deep learning-based vulnerability detection results or
not.

Our contributions. In this article, we make two contributions. First, we initiate the study of inter-
preting the predictions (or classifications) of deep learning-based vulnerability detectors. Specif-
ically, we propose a framework for interpreting predictions of deep learning-based vulnerability
detectors. The framework aims to extract some rules with respect to specific examples, which are
pieces of program source code that are predicted (or classified) as vulnerable or not (i.e., achieving
local interpretation). The framework is centered at identifying a small number of tokens that make
important contributions to a particular prediction. The framework is model-agnostic, meaning
that it can be instantiated to accommodate any deep learning-based vulnerability detectors. The
framework uses the important tokens to extract some decision-tree rules, which can be understood
by domain experts in explaining why a particular example is predicted into a particular label (i.e.,
vulnerable or not). When compared with existing local interpretation methods that are proposed
in other applications domains and are not known to be applicable to vulnerability detection, the
novelty of the framework can be characterized as follows: (i) it does not assume the detector’s
local decision boundary is linear; (ii) it does not assume the features are independent of each
other but instead braces the association between features when searching for important features;
(iii) it searches important features by perturbing examples, while considering feature combinations
rather than individual features. These suggest that the framework can achieve a high fidelity, be-
cause it captures more information about the non-linear local decision boundary with respect to
an example.
Second, to demonstrate the usefulness of the framework, we conduct a case study by leveraging

two deep learning-based vulnerability detectors, VulDeePecker [27] and SySeVR [26]. Experimen-
tal results are highlighted as follows: (i) the framework can indeed identify important features
owing to its high fidelity; (ii) the framework can produce some vulnerabilities that can be un-
derstood by domain experts for accepting a detector’s outputs (i.e., true positives) or rejecting a
detector’s outputs (i.e., false-positives and false-negatives). We also discussed some limitations of
the present study, which indicate interesting open problems for future research.

Paper outline. The rest of the article is presented as follows. Section 3 presents the methodology.
Section 4 describes our case study and experimental results. Section 5 discusses the limitations of
the present study. Section 6 reviews related prior work. Section 7 concludes the present article.
Table 1 summarizes the main notations.

2 DEEP LEARNING-BASED VULNERABILITY DETECTION

In this section, we give a brief review of deep learning-based vulnerability detection. Figure 1
highlights the structure of a deep learning-based vulnerability detection system, which can be

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:4 D. Zou et al.

Table 1. Main Notations Used in the Paper

Notation Description
xi xi = (xi,1, . . . ,xi,n) is the n-dimensional feature representation of the ith

example; xi, j is called a token
x ′i the feature representation of an example obtained by perturbing xi (e.g., xi,−J ,

xi,+J)
xi,−j ,xi,−J xi,−j = (xi,1, . . . ,xi, j−1,xi, j+1, . . . ,xi,n) is the feature representation of the

perturbed example obtained by deleting the jth token xi, j from xi ,
corresponding to deleting the jth feature; xi,−J is the feature representation of
the perturbed example obtained by deleting the tokens in a token sequence,
for example, J = (xi,β1 , . . . ,xi,βω) from xi where {xi,β1 , . . . ,xi,βω } ⊂
{xi,1, . . . ,xi,n }, corresponding to deleting βω features

xi,+j ,xi,+J xi,+j = (xi,1, . . . ,xi, j−1,xi, j + δi, j ,xi, j+1, . . . ,xi,n) is the feature representation
of a perturbed example obtained by adding noise δi, j to the jth token xi, j ,
corresponding to perturbing the jth feature; xi,+J is the feature representation
of a perturbed example obtained by adding noises to the tokens in a token
sequence, for example, J = (xi,β1 , . . . ,xi,βω) from xi where
{xi,β1 , . . . ,xi,βω } ⊂ {xi,1, . . . ,xi,n }, corresponding to perturbing βω features

M the vulnerability detector for which we aim to explain its predictions
M (xi),My (xi) M (xi) is the label of xi predicted byM ;My (xi) is the probability thatM

predicts xi into label y
φi φi = (xi,α1 , . . . ,xi,αγ) is a sequence of xi ’s γ important tokens identified by an

interpretation method, ordered in descending importance
ϕi ϕi = (xi,α ′1 , . . . ,xi,α ′γ) is a sequence of xi ’s γ important tokens identified by

vulnerability detectorM , ordered in descending importance
τ a threshold for determining whether two tokens are associated with each

other or not, with respect toM
Gp Gp = (Cp,1, . . . ,Cp,ξp) is a sequence of token combinations, where each Cp, j =

(xi,t1 , . . . ,xi,tκ) is a sequence of tokens in xi with {t1, . . . , tk } ⊂ {1, . . . ,n}
I ′p,xi,αj , Ixi,αj I ′p,xi,αj is the importance of token xi,α j in Gp ; Ixi,αj is the importance of token

xi,α j in xi

instantiated with an appropriate code fragment level, a particular kind of code representation, and
an appropriate deep neural network structure to obtain specific vulnerability detectors [26, 27].
The input is the source code of (i) some training programs that are used to train a deep learning
model or detector in the learning phase and (ii) some target programs that are to be analyzed by
the detector for deciding whether they contain some software vulnerabilities or not. The output
is the classification results of code fragments in target programs.
At a high level, a deep learning-based vulnerability detector has four components.

• Generating code fragments. This component decomposes the training and target pro-
grams into some kinds of code fragments, where a code fragment can be a function [28, 53]
or a program slice (i.e., a number of statements that are semantically related to each other
in terms of data dependency and control dependency) [26, 27, 54].

• Transforming code fragments into vectors. Each code fragment extracted from the
training of target programs needs to be represented as a sequence of tokens (e.g., identi-
fiers, operators, constants, keywords, etc.) and then encoded into vectors. A vector derived

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:5

Fig. 2. An illustration of (a) a piece of code containing an uncontrolled format string vulnerability and (b) a
possible rule for explaining why a vulnerability detectorM predicts the piece of code as vulnerable.

from a code fragment that is extracted from a training program is labeled as “1” if the code
fragment is vulnerable and “0” otherwise.

• Training a deep learning model. By leveraging the vectors derived from the code frag-
ments and their labels corresponding to the training programs, this component learns a deep
neural network, such as Bidirectional Gated Recurrent Unit (BGRU) [26], Bidirectional Long
Short-Term Memory (BLSTM) [27], or Convolutional Neural Network (CNN) [26, 40].

• Detecting vulnerabilities. This component applies the trained deep learning model to
classify the code fragments, which are extracted from the target programs, as vulnerable or
not.

Despite the substantial effort spent on designing deep learning-based vulnerability detectors,
the problem of interpreting or explaining a vulnerability detector’s prediction remains open. In
this article, we make the first step toward tackling this problem.

3 FRAMEWORK

3.1 Problem Statement

In this article, we focus on deep learning-based vulnerability detectors because of their success
mentioned above, while noting that the framework can be adapted to detectors using other kinds
of machine learning techniques. An example is a piece of program source code (i.e., code fragment),
which can be represented as a n-dimensional feature vector xi = (xi,1,xi,2, . . . ,xi,n); we call xi, j
(1 ≤ j ≤ n) a token, which can be an identifier, an operator, a constant, a keyword, and so on. A
deep learning-based vulnerability detector M is learned from some training dataset of examples,
each of which is represented by a n-dimensional vector mentioned above and is accompanied with
a label (i.e., vulnerable or not vulnerable). LetM (xi) denote the class or label of xi predicted byM ,
whereM (xi) ∈ {0, 1} for binary classification (“1” means vulnerable and “0” means not vulnerable).
LetMy (xi) ∈ [0, 1] denote the probability thatM predicts example xi into label y ∈ {0, 1}.
The research problem is to extract some human-understandable rules to explain whyM predicts

a target example xi of interest into labely rather than ȳ = 1 − y. Since the number n of dimensions
is often large, which makes the resulting rules often difficult to understand, we propose identifying
and utilizing γ � n important tokens of a target example xi to extract some rules to explain why
M predicts xi into label y rather than ȳ = 1 − y. Let φi = (xi,α1 , . . . ,xi,αγ) denote the γ important
tokens that are identified by an appropriate method, where {α1, . . . ,αγ } ⊂ {1, . . . ,n}. We stress
that theseγ tokens are specific to xi , rather than generally applicable to the feature representation.
Figure 2(a) shows a piece of code that is typically obtained by applying some preprocessing al-

gorithm associated withM to some software program for whichM aims to detect its vulnerabilities

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:6 D. Zou et al.

Fig. 3. A framework for explaining whyM (xi) returns y rather than ȳ in three steps.

(if any). In the context of deep learning-based vulnerability detection, such a piece of code may
not correspond to some consecutive statements in a software program; instead, it often captures
statements that are semantically related to each other (justifying the need of the aforementioned
preprocessing). The piece of code shown in Figure 2(a) contains an uncontrolled format string vul-
nerability. Suppose xi = (xi,1, . . . ,xi,n) is the feature representation of this piece of code and M
predicts xi as vulnerable or 1← M (xi). The research problem is to identify a few important tokens
of xi that can be leveraged to explain M’s prediction. Figure 2(b) illustrates one possible explana-
tion: The piece of code (corresponding to xi) is vulnerable, because vfprintf is called without a
format string when its parameter data is read from fgets.

3.2 Framework Overview

Figure 3 highlights the framework for explaining why y ← M (xi) rather than ȳ ← M (xi). The
framework has three steps.

• Step I: Heuristic searching. This step aims to search for a sequence φi = (xi,α1 , . . . ,xi,αγ) of
γ important tokens of example xi using an interpretation method. These perturbed tokens
are ranked according to their contribution in leading to the flipping of the prediction label.
A concrete method for this purpose is to (i) perturb xi into some variant examples near the
decision boundary, and (ii) identify important tokens as the ones whose perturbations lead
to the variant examples have significant impact on the prediction ofM .

• Step II: Fidelity evaluation. This step aims to evaluate the fidelity of an interpreta-
tion method with respect to M . This can be done by “comparing” the sequence φi =
(xi,α1 , . . . ,xi,αγ) of γ important tokens identified by an interpretation method and the se-
quence ϕi = (xi,α ′1 , . . . ,xi,α ′γ) of γ important tokens identified byM itself.

A concrete method is to “compare” the impact of deleting the r important tokens
in φi on the output of vulnerability detection model M , namely, contrasting M (xi) and
M (xi,−α1−···−αr).

• Step III: Rules extraction. This step aims to extract human-understandable rules for explain-
ing why y ← M (xi) rather than ȳ ← M (xi).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:7

A concrete method is to add some “meaningful” noises to the afore-identified important
tokens of xi to further generate multiple perturbed examples, train a decision tree-based
regression model based on these perturbed examples, and extract rules from this regression
model.

It should be noted that our framework focuses on deep learning-based vulnerability detectors with
binary classification (i.e., vulnerable versus not vulnerable) and that the input target examples are
extracted from program source code. In the next subsections, we elaborate the three steps of the
framework.

3.3 Step I: Heuristic Searching

This step is further divided into two sub-steps: perturbing target examples and searching for impor-
tant tokens.

3.3.1 Perturbing Target Examples. Given vulnerability detectorM and target example xi where
y ← M (xi), this step aims to heuristically search for a sequence φi = (xi,α1 , . . . ,xi,αγ) of γ impor-
tant tokens such that their perturbation leads to a new example x ′i and ȳ ← M (x ′i). There are many
methods for perturbing examples, such as the following.

• Perturbation by adding noise to tokens: This is to add some noise δi, j to the jth to-
ken in xi = (xi,1, . . . ,xi,n), leading to the feature representation of a new (or variant) ex-
ample, denoted by xi,+j = (xi,1, . . . ,xi, j−1,x

′
i, j ,xi, j+1, . . . ,xi,n), where the perturbation is

x ′i, j = xi, j + δi, j . This corresponds to perturbing the jth feature. We say a noise δi, j ismean-

ingful if x ′i, j preserves the type of xi, j , such as API function calls, keywords, operators, de-
limiters, and constants. For example, a meaningful noise may perturb an operator xi, j = +
to operator x ′i, j = −. This perturbation can be extended to accommodating a sequence of to-
kens J = (xi,β1 , . . . ,xi,βω), where {β1, . . . , βω } ⊂ {1, . . . ,n}. By, respectively, adding noises
to the tokens in J , we would obtain the feature representation of a new example, denoted
by xi,+J .

• Perturbation by deleting tokens: This is to delete the jth token xi, j from xi =
(xi,1, . . . ,xi,n), leading to the feature representation of a new example, denoted by xi,−j =
(xi,1, . . . ,xi, j−1,xi, j+1, . . . ,xi,n). This perturbation can also be extended to multiple tokens,
say a sequence of tokens J = (xi,β1 , . . . ,xi,βω), where {β1, . . . , βω } ⊂ {1, . . . ,n}. Deleting
the tokens in J leads to a new example, denoted by xi,−J .

For concise description, we may use x ′i to denote a new example that is obtained by perturbing xi
butwithout specifyingwhat the perturbation is. This notation is useful especially when the specific
perturbation method does not matter; for example, when we discuss the degree of perturbations.
The degree of perturbation can be measured by using a standard norm, denoted by | |x ′i − xi | |. In
the case of adding noise, the �1 norm means | |x ′i − xi | | =

∑n
j=1 xi, j ⊕ x ′i, j , indicating the number of

tokens that have been perturbed; in the case of deletion, it means the number of tokens that are
deleted.

Definition 3.1 (degree of Token Association). Given a vulnerability detector M and a target ex-
ample xi = (xi,1, . . . ,xi,n), we define the degree that the hth token xi,h is associated to a token
sequence J (of one or more tokens) as

|M1 (xi,−J) −M1 (xi,−J−h) | − |M1 (xi) −M1 (xi,−h) |. (1)

Intuitively, the degree of token association given by Equation (1) captures that the extra “dam-
age” to the classification accuracy that is incurred by deleting a token together with other token(s),

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:8 D. Zou et al.

when compared with the “damage” to the classification accuracy that is incurred by deleting the
specific token alone.

3.3.2 Searching for Important Tokens. Given example xi and vulnerability detectorM , to search
for γ important tokens, there are n × (n − 1) × · · · × (n − γ + 1) candidates, meaning that searching
is feasible only for small constant γ . Therefore, we need some heuristic strategies. However, a
competent search algorithm should take into consideration the afore-defined token association,
because the tokens may not be independent of each other. This leads to the following notion of
token combinations.

Definition 3.2 (Token Combination). Given vulnerability detector M and target example xi =
(xi,1, . . . ,xi,n), a token combination C is a sequence of associated tokens in xi , denoted by C =
(xi,t1 , . . . ,xi,tκ), meaning that xi,tj is possibly associated to xi,th for 1 ≤ t1 ≤ tj , th ≤ tκ ≤ n.

Algorithm 1 is a concrete method for searching for important tokens by perturbing xi to x ′i
while bounding the degree of perturbation from above by | |x ′i − xi | | ≤ Θ, where | | · | | is an ap-
propriate norm (e.g., the �1-norm as mentioned in Section 3.3.1) and Θ is the perturbation upper
bound. To increase the chance for the algorithm to identify truly important tokens, we search for
N sequences of token combinations, denoted byG1, . . . ,GN , whereGp = (Cp,1, . . . ,Cp,ξp) is a se-
quence of token combinations as defined in Definition 3.2 and 1 ≤ p ≤ N . Different sequences of
token combinations start with different token combinations, meaningCp,1 � Cq,1 for 1 ≤ p,q ≤ N
and p � q. The algorithm first initializes N sequences of token combinations as empty sequences
(Lines 1–3 of Algorithm 1). For each sequence of token combinations Gp , the algorithm searches
for a token combination C by using function searchTokenCombination, which will be detailed as
Algorithm 2. We use a flag Z to mark the target of the searching process in a loop (Line 7), where
“Z = True” means that the algorithm finds a token combination whose perturbation can cause
the flipping of the predicted label. In the next loop, function searchTokenCombination searches for
the token combination that can: (i) flip the predicted label M (xi,−J) after deleting a small number
of tokens while leading to the largest change to M1 (xi,−J); or (ii) lead to the largest change to
M1 (xi,−J) after reaching the perturbation upper bound, where J is the sequence of tokens corre-
sponding to the token combinations of Gp . When a loop ends with Z = False, the algorithm does
not find any token combination whose perturbation causes the flipping of the label. As an alterna-
tive, function searchTokenCombination searches for the token combination whose perturbation can
cause the largest change toM1 (xi,−J). Then, the token combinationC is appended to the end ofGp

(Lines 9–16 of Algorithm 1). The process of searching for token combinations of Gp repeats until
there are at least Ω important tokens in the token combinations ofGp (Lines 8–22 of Algorithm 1),
When each of the N sequences of token combinations has at least Ω important tokens, the search
process ends (Lines 5–23 of Algorithm 1). Finally, the algorithm computes the token importance of
each token in φi (Lines 24–26 of Algorithm 1) according to the following Definition 3.3; this allows
to sort the important tokens by their importance in descending order, leading to the sequence of
important tokensφi for xi as the output of the heuristic searching (Lines 27 and 28 of Algorithm 1).

For each token in combinationC , Algorithm 1 computes its importance in the sequence of token
combinations Gp and appends these tokens to the end of sequence φi . The algorithm divides the
important tokens in φi into two groups: positive tokens and negative tokens, depending on the
direction of M1 (x

′
i) incurred by the perturbation (rather than depending on whether the label is

flipped or not). Specifically, positive tokens are the ones whose perturbations makeM1 (x
′
i) change

in the direction toward the opposite of the predicted label M (xi), namely, 1 −M (xi); negative
tokens are the tokens whose perturbations can make M1 (x

′
i) change in the direction toward the

predicted label M (xi). Note that positive tokens have odd indices in the sequence Gp of token

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:9

ALGORITHM 1: Heuristic searching with token deletion

Input: M (vulnerability detector); xi (example of interest); N (the number of sequences of token combina-
tions); Ω (the number of tokens in each sequence of token combinations); Θ (perturbation upper bound);
k (the number of reserved token combinations during each loop of searching)

Output: A sequence of γ important tokens φi = (xi,α1 , . . . ,xi,αγ) for xi with respect to our interpretation
method

1: for p ← 1 to N do

2: Initialize each sequence of token combinations Gp as an empty sequence;
3: end for

4: Initialize φi as an empty sequence; (for storing γ important tokens in descending order)
5: for p ← 1 to N do

6: Initialize J as an empty sequence; (for storing important tokens recorded by Gp)
7: Z ← True; (a flag for marking the searching target)
8: while |J | < Ω do

9: C ← searchTokenCombination(M , xi,−J , Θ, Z , k), where C could changeM1 (xi,−J) the most
10: if M (xi,−J) = M (xi,−J−C) and Z = True then
11: Z ← False
12: else

13: Z ← True
14: end if

15: Append all tokens in C to the end of J ;
16: Append C to the end ofGp (the first token combination in each Gp should be different);
17: Compute the importance of token combination IC according to the change in M1 (x

′
i) as caused

by C ;
18: for each token f ∈ C do

19: Compute the token importance of f in Gp , denoted by I ′p,xi, f ;
20: Append f to the end of φi ;
21: end for

22: end while

23: end for

24: for each token xi,α j ∈ φi do
25: Compute the token importance Ixi,αj by the token importance of xi,α j in N sequences of token com-

binations (i.e., I ′1,xi,αj
, . . . , I ′

N ,xi,αj
);

26: end for

27: Sort the tokens in φi by their importance in the descending order;
28: return φi ;

combinations and negative tokens have even indices in Gp . If xi is perturbed to x ′i by the tokens
in token combination C that contains xi,α j , then the token importance of xi,α j in Gp depends on
(i) the importance of token combination C , denoted by IC , and (ii) the number of tokens in C ,
denoted by s . The more important C is and the fewer tokens C contains, the more important the
xi,α j is. Formally, we have

Definition 3.3 (Token Importance). Denote by I ′p,xi,αj the importance of xi,α j in Gp , which is de-

fined as:

I ′p,xi,αj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ IC
s
, if xi,α j is in Gp and the index of C is odd,

−λ IC
s
, if xi,α j is in Gp and the index of C is even,

0, if xi,α j is not in Gp ,

(2)

where IC is the importance of token combinationC , namely, the change |M1 (xi,−J−C) −M1 (xi,−J) |
incurred by C , s is the number of tokens in C , and λ is the attenuation factor to balance the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:10 D. Zou et al.

importance of different token combinations (e.g., λ = 1/q with q being the index of the token
combination in a sequence).
Intuitively, a token’s importance is independent of the Gp ’s to which it belong. This suggests

the following method for computing a token’s importance. For token xi,α j ∈ φi where 1 ≤ α j ≤ n,
its importance, denoted by Ixi,αj , is defined as

Ixi,αj = siдn
��
�

N∑
p=1

			I ′p,xi,αj
			

�
�
, (3)

where the siдn function is meant to make the sign (i.e., positive or negative) of Ixi,αj the same as
the sign of the largest |I ′p,xi,αj | among the N sequences of token combinations G1, . . . ,GN .

Recall that a positive token has a positive importance and has an odd index in some sequence
of token combinations, and that a negative token has a negative importance and has an even
index in some sequence of token combinations. Note also that when a token xi,α j is in the token
combination with odd (respectively, even) index in Gp and also in the token combination with
even (resp. odd) index inGq , the sign of token importance depends on the sign of the one who has
a larger absolute value.
Now, we present the details of function searchTokenCombination in Algorithm 1 as the follow-

ing Algorithm 2. Denote by Fi the set of all tokens in x ′i , by A = (a1, . . . ,aθ) a sequence of token
combinations a1, . . . ,aθ , and by C the token combination that is being searched. For each token
combination inA′, the algorithm treats each token in Fi as a token combination a and append it to
A (Lines 8–12) in the first loop of Lines 10–23. If multiple token combinations lead to the flipping
of the predicted label M (x ′i), namely, M (x ′i) � M (x ′i,a), then C is updated to be the token com-
bination that leads to the largest change to M1 (x

′
i) (Lines 13–22), meaning |M1 (x

′
i,−C) −M1 (x

′
i) |

is maximized. In the loop of Lines 10–23, the algorithm appends each token f that has yet to be
perturbed into a, which is then appended to A (Lines 8–12). If (i) “Z = True” and there are token
combinations whose perturbation can cause the flipping ofM (x ′i) or (ii) “Z = False,” thenC is up-
dated to the token combination whose perturbation can cause the flipping ofM1 (x

′
i) (Lines 13–22).

Then, the token combinations in A are sorted in the descending order whenM (x ′i) = 1 and in the
ascending order when M (x ′i) = 0, and the first k token combinations are retained (Lines 25–31).
The algorithm repeats the while loop (Lines 5–32) until identifying a token combination that flips
the predicted label M (x ′i) or the perturbation upper bound has been reached (i.e., the number of
tokens in each token combination in A equals to Θ). If Θ tokens of xi are deleted andM (x ′i) is not
flipped, thenC is updated to a1, which leads to the largest changes toM1 (x

′
i). The time complexity

of Algorithm 2 is O (k ∗ |Fi | ∗ θ), where |Fi | is the size of set Fi .
Illustrating Algorithms 2. Figure 4 uses a specific xi related to the uncontrolled memory alloca-
tion vulnerability mentioned above to illustrate the searching process for obtainingG1, where the
parameters includeΘ = 5 and k = 4. In this case, the predicted label 0← M (xi) and 0.01← M1 (xi).
The Algorithm 1 initializes G1 as an empty sequence and uses Algorithm 2 to search for the
first token combination as follows. The algorithm treats each token in xi as a token combi-
nation and identifies one or multiple token combinations that lead to the flipping of the pre-
dicted label, namely, 1← M (xi,−93). Since token xi,93 (i.e., &&) leads to the flipping of the the
predicted label, namely, 1← M (xi,−93) whereas 0← M (xi), and leads to the largest change to
M1 (xi) (i.e., 0.86 − 0.01 = 0.85), the token combination “(&&)” is appended to G1. Then, the al-
gorithm searches for the second token combination for G1 based on xi,−93, where “93” is the
index of “&&” in xi . The algorithm traverses the tokens in xi,−93 individually, and finds that no
token can lead M1 (xi,−93) to flip the model prediction. Therefore, the algorithm retains the k

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:11

ALGORITHM 2: Function searchTokenCombination in Algorithm 1 (for the purpose of searching
for a token combination)

Input: M (vulnerability detector); x ′i (example); Θ (perturbation upper bound); Z (indicating the search tar-
get); k (number of reserved token combinations at each loop of searching)

Output: The token combination C , which could (i) flip the predicted label M (x ′i) by deleting the fewest
tokens while changing M1 (x

′
i) the most or (ii) change M1 (x

′
i) the most if Θ tokens of xi are deleted and

M (x ′i) is not flipped
1: function searchTokenCombination(M , x ′i , Θ, k)
2: Fi ← the set of all tokens in x ′i ;
3: Initialize the sequence of token combinations A = (a1, . . . ,aθ) as a sequence that contains only an

empty token combination;
4: Initialize token combination C as an empty sequence;
5: while (C is an empty sequence) and (the number of tokens in each token combination in

A < Θ) do
6: A′ ← A;
7: A← an empty sequence;
8: for each token combination a ∈ A′ do
9: F ′i ← the set of all tokens in a;
10: for each token f ∈ Fi − F ′i do
11: Append f to token combination a;
12: Append a to the sequence of token combination A;
13: if Z = True andM (x ′i) � M (x ′i,−a) then
14: if (C is an empty sequence) or (|M1 (x

′
i,−a) −M1 (x

′
i) | > |M1 (x

′
i,−C) −M1 (x

′
i) |) then

15: C ← a;
16: end if

17: end if

18: if Z = False then
19: if (C is an empty sequence) or

(
M (x ′i) = 1 andM1 (x

′
i,−a) > M1 (x

′
i,−C)

)
or
(
M (x ′i) = 0

andM1 (x
′
i,−a) < M1 (x

′
i,−C)

)
then

20: C ← a;
21: end if

22: end if

23: end for

24: end for

25: if Z = True andM (x ′i) = 1 then
26: Sort the token combinations in A by M1 (x

′
i,−a) in descending order;

27: end if

28: if Z = True andM (x ′i) = 0 then
29: Sort the token combinations in A by M1 (x

′
i,−a) in ascending order;

30: end if

31: A← the sequence of token combinations (a1, . . . ,ak);
32: end while

33: if C is an empty sequence then
34: C ← a1;
35: end if

36: return C ;
37: end function

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:12 D. Zou et al.

Fig. 4. Illustrating the search of token combinations in G1, where boxes with texture represent the token
combinations in G1, boxes without texture do not belong to G1, bold boxes highlight label flipping (with
threshold τ = 0.5), and a number in parentheses indicates a token’s location in the target example of interest.

Fig. 5. Illustrating the calculation of the importance of token “myString” Ixi,98 by two sequences of token
combinations (i.e., G1 and G2) for target example xi in Figure 4.

most important token combinations, namely, “(myString),” “(size_t),” “([)” and “(;).” The
algorithm continues the search based on each of these token combinations. Consequently, the
algorithm identifies several token combinations that lead to the flipping. Among these token
combinations, the token combination “(myString, HELLO_STRING)” leads to the largest change		M1 (xi,−93−98−110) −M1 (xi,−93)		 = |0.28 − 0.86| = 0.58 and is therefore appended to G1.

Figure 5 illustrates the calculation of token importance Ixi,98 involving two sequences of token
combinations for target example xi in Figure 4. According to Equation (3), the importance of token
xi,98 (i.e., myString) is Ixi,98 = siдn(I

′
1,xi,98

+ I ′2,xi,98). According to Equation (2), we have I ′1,xi,98 =

−λ IC1,2

s
. Since the index of the token combination involving xi,98 C1,2 is 2, C1,2 has 2 tokens, and

IC1,2 = 0.58 (M1 (xi,−93−98−100) −M1 (xi,−93)), the importance of xi,98 in G1 is I ′1,xi,98 = −
1
2 ×

0.58
2 =

−0.145. Similarly, the importance of xi,98 inG2 is I ′2,xi,98 = −λ
IC2,2

s
= − 1

2 ×
0.66
2 = −0.165. Therefore,

Ixi,98 = −|I ′1,xi,98 + I
′
2,xi,98

| = −0.31 and xi,98 is a negative token.

3.4 Step II: Fidelity Evaluation

In the context of interpretability, the notion of fidelity [37] has been used to describe the degree
at which an interpretation method approximates the behavior of the target model (i.e., M in the
context of the present article). For vulnerability detection, we use the important tokens identified
by Algorithm 1 for model interpretation and define fidelity as follows.

Definition 3.4 (Fidelity). Intuitively, fidelity is the degree at which the sequence of the αγ im-
portant tokens identified by an interpretation method, namely, φi = (xi,α1 , . . . ,xi,αγ), is “similar”
to the sequence of the α ′γ important tokens considered by the target vulnerability detector M ,

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:13

denoted by ϕi = (xi,α ′1 , . . . ,xi,α ′γ), where 1 ≤ α ′1, . . . ,α
′
γ ≤ n and the α ′γ important tokens are also

sorted according to their importance in descending order. Moreover, the higher the similarity
between φi and ϕi , the higher fidelity the interpretation method. Because of the black-box nature
of deep learning models, ϕi is often unknown. Nevertheless, important tokens ϕi would affect
the decision-making of the model. The similarity between φi and ϕi can be approximated by
the impact that is incurred when deleting the tokens in φi on the output of the vulnerability
detection model, as follows: (i) the difference between the classification results of target models
fine-tuned by training examples using versus not using the important tokens in φi ; and (ii) the
difference between the classification results of target examples when using versus not using the
important tokens in φi . The bigger these differences, the greater the impact on the output of the
classification model, and the higher the similarity between φi and ϕi .

3.4.1 Model Impact Evaluation. To characterize the impact of important tokens on the vulner-
ability detection model, we quantify the fidelity of the interpretation method from the change in
a vulnerability detector’s output. Given a set of examples D, let M ′ be the vulnerability detector
obtained by fine-tuning M using the examples in D except the important tokens identified by Al-
gorithm 1 and M+ be the vulnerability detector obtained by fine-tuning M using the examples in
D, where “fine-tuning M” means to use the examples in D, which is different from the data set
that was used for trainingM . More specifically, to fine-tune the vulnerability detectorM , we first
randomly select a set of examplesD from the data set. For each example xd ∈ D, after obtaining the
important tokens from Steps I, we remove the first r important positive tokens to obtain xd,−φr

d
,

where φr
d
is the set of first r important tokens, and obtain a new data set D ′. Then, we use D ′ to

fine-tune vulnerability detectorM to obtainM ′ and use D to fine-tune vulnerability detectorM to
obtainM+. For each target example xu ∈ U , whereU � D, we obtainM ′1 (xu),M

+
1 (xu),M

′(xu), and
M+ (xu). Finally, we get the difference between the outputs of the two models on U . The greater
the difference between the M ′ and M+, the better the vulnerability detector understood by the
interpretation method.

Definition 3.5 (Class Change). Given a vulnerability detector M and a dataset U =
{x1,x2, . . . ,xT }, where T is the number of examples in U , the Class Change (CC) is defined as
the differences between the classification results ofM+ and the classification results of M ′ on the
examples inU . Intuitively, the greater the difference between the outputs of two detectors for the
same input examples, the more important the deleted tokens, and the higher the fidelity.

For a target example xu (1 ≤ u ≤ T), let |TP ′ | be the number of examples that satisfy M ′(xu) =
M+ (xu) = 1, |FP ′ | be the number of examples that satisfyM ′(xu) = 1 andM+ (xu) = 0, |FN ′| be the
number of examples that satisfyM ′(xu) = 0 andM+ (xu) = 1, and |TN ′ | be the number of examples
that satisfyM ′(xu) = M+ (xu) = 0. The following four metrics are used to evaluate the CC: (i) false-

positive rate ofM ′ with respect toM+, denoted by FPR′ = |F P ′ |
|F P ′ |+ |T N ′ | ; (ii) false-negative rate ofM

′

with respect toM+, denoted by FNR′ = |FN ′ |
|T P ′ |+ |FN ′ | ; (iii) accuracy ofM

′with respect toM+, denoted

by A′ = |T P ′ |+ |T N ′ |
|T P ′ |+ |F P ′ |+ |T N ′ |+ |FN ′ | ; (iv) the overall effectiveness F1-measure ofM ′ with respect toM+,

denoted by F1′ = 2 |T P ′ |
2 |T P ′ |+ |F P ′ |+ |FN ′ | . Note that a larger FPR

′, larger FNR′, lower A′, and lower F1′

indicate that the important tokens identified by the interpretation method are more faithful to the
important tokens that are implicitly recognized byM .

Definition 3.6 (Vulnerable Probability Change). Given a vulnerability detector M and a test set
U = {x1,x2, . . . ,xT } whereT is the size of the test set), the Vulnerable Probability Change (VPC) of
an interpretation method is defined as the root-mean-square error for the probability that vulnera-
bility detectorM ′ predicts target examplexu (1 ≤ u ≤ T) into vulnerable (y = 1) and the probability

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:14 D. Zou et al.

that vulnerability detectorM+ predicts target example xu into vulnerable (y = 1), namely,

VPC =

√√√
1

T

T∑
u=1

(M ′1 (xu) −M+1 (xu))2. (4)

Recall that vulnerability detector M ′ uses the examples without important tokens to fine-tune
M . If the important tokens identified by the interpretation method are indeed important, then
M ′ would learn patterns corresponding to the unimportant tokens (i.e., the tokens that are not
deleted), which enlarges the difference betweenM ′ andM . However, vulnerability detectorM+ is
trained by using the same examples with the same tokens (including the important tokens) as what
were used for training M . For target example xu ∈ U , the greater the difference between M ′1 (xu)
andM+1 (xu), the greater the difference between the fine-tuned vulnerability detectorsM ′ andM+,
and the more important the tokens identified by the interpretation method. Therefore, the larger
VPC, the better important tokens that identified by the interpretation method.

3.4.2 End-to-end Impact Evaluation. To evaluate the impact of important tokens on the target
examples, we conduct an end-to-end impact evaluation using the idea of token deduction test [20].
The basic idea is the following. For each target example xi , we construct an example xi,−φri by
deleting the tokens in φri from xi , where φri is the set of first r important tokens for xi . Then, we
obtain M (xi,−φri) and calculate the indicator Positive Classification Rate (PCR) [20], which mea-
sures the proportion of target examples that satisfyM (xi,−φri) = M (xi) to the total target examples.
If the tokens obtained by Step I mentioned above are accurately selected, then deleting φri from the
example xi will flip the predicted label. Therefore, if the interpretation method has high fidelity,
then a low PCR will be returned during the token deduction test.

3.5 Step III: Rules Extraction

After obtaining some important tokens, we aim to extract some human-understandable rules for
each target example. For this purpose, we use a decision tree-based regression model to find the
impact of important tokens on model decision making, which involves the following three steps.

Step III.1 Adding meaningful noise. To assure efficiency, we add meaningful noise to target
examples by replacing important tokens, where meaningful noise can make the program remain
correct syntax when added to the token. For each target example xi , we structure xi,+j where
xi, j corresponds to the important tokens obtained in Step I. We propose the following strategies
to automatically add noise while trying to follow the syntax of the program. For constants that
take continuous values, we perform intra-region random replacements (i.e., replacing it with a
random value in the domain of token). For tokens that are not constants but take discrete (or
categorical) values (e.g., API function calls, keywords, operators, and delimiters), we perform the
random replacement with tokens of the same type. For example, a token that is a number “10” can
be replaced with “5,” “9,” “11,” and “20”; a relational operator “>” can be replaced with another
relational operator such as “<,” “!=,” and “==.”

Step III.2 Constructing data for regression model. The training data for the decision tree-
based regression model include training inputs and expected outputs. Each training input is a
noise addition condition for the perturbed example obtained from the previous step, thus each
dimension corresponds to a change in an important token, and the corresponding expected output
is the probability that the vulnerability detectorM predicts the perturbed example into vulnerable.
For constants, the dimension value is x ′i, j resulting from noise addition; for other tokens, we use “1”
or “0” for the dimension value, where “1” means that the type of token x ′i, j is the same as the type

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:15

Fig. 6. An example to illustrate the training input for rules extraction for target example xi in Figure 4. The
token “&&” is replaced by “||,” thus the value of corresponding dimension in the training input is 0; the token
“100” is replaced by “5,” thus the value of corresponding dimension in the training input is 5.

of token xi, j and “0” otherwise. Figure 6 illustrates an example of decision tree-based regression
model for target example xi in Figure 4, where meaningful noise is added to token xi,93 (i.e., “&&”)
and token xi,96 (i.e., “100”). Specifically, token “&&” is replaced by “||” in the perturbed example
x ′i , meaning that the dimension value of the training input is 0; token “100” is replaced by “5,”
meaning that the dimension value in the training input is 5.

Step III.3 Training a regression model. For each target example xi , we use the training data
from the previous step to train a decision tree-based regression model Treei , which can fit the
vulnerability detector M as much as possible. In a decision tree, each non-leaf node corresponds
to an if condition with an important token that determines whether the important token is used
in the example xi , each leaf node corresponds to a prediction, and each path from the root to a leaf
represents a decision. By synthesizing the if conditions corresponding to the nodes on a root-
to-leaf path, we can extract an if-then-else rule corresponding to the path. Since a decision
tree is easy to understand, we propose leveraging the decision tree to extract the if-then-else
rules to explain the prediction of a target example. Recall that the Program Dependency Graph
(PDG) is a graphical representation of the program whose edges represent the data dependency
and control dependency of statements in the program. Algorithm 3 shows the process of extract-
ing an understandable vulnerability rule. Based on the regression values corresponding to differ-
ent branches in the decision tree, we select the tokens corresponding to the intersections of the
branches with large differences as the tokens for generating the rules. According to the tokens in
the if-then-else rule extracted from the decision tree, we can find the corresponding statements
and the data dependency and control dependency in PDG. Then domain experts can summarize
human-understandable rules by synthesizing the if-then-else rules composed of important tokens
and the data dependency and control dependency in the PDG.
Figure 7 shows a decision tree and a subgraph of PDG for a target example. According to

Figure 7(b), when at least one of “recv” and “for” is used in xi (i.e., the corresponding if con-
dition is True), the regression value range is 0.82–0.96; when “recv” and “for” is not used in
xi (i.e., the corresponding if condition is False), the regression value range is 0.69–0.82. Since
these branches intersect with “recv” and “for,” the sequence of tokens J = (“recv,” “for”). The
if-then-else rule BranchRule is “if ‘recv’ or ‘for’, then vulnerable.” These tokens are located
in Line 2 and Line 10 of this example, respectively, in Figure 7(a), which has a data dependency
from variable “inputBuffer” in Line 2 to “data” in Line 10 (denoted by Depend), as shown in
Figure 7(c). BranchRule and Depend can help domain experts to summarize a understandable rule
as follows: If the external input from recv in for loop (e.g., the “data” in for loop is data-dependent
on parameter “inputBuffer” in recv) is used, then the example is vulnerable.

4 CASE STUDY

4.1 Vulnerability Detectors and Dataset

To demonstrate the usefulness of the framework, we conduct a case study on two deep learning-
based vulnerability detectors, VulDeePecker [27] and SySeVR [26]. We choose these two detectors,

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:16 D. Zou et al.

Fig. 7. A trained decision tree and a subgraph of the PDG for a target example: the first five important
tokens identified by our interpretation method are highlighted, which involve five positive tokens that are,
respectively, highlighted by solid boxes. The vulnerability rule can be summarized as: If the external input
from “recv” in “for” loop (e.g., the “data” in “for” loop is data-dependent on parameter “inputBuffer” in
“recv”) is used, then the example is vulnerable.

ALGORITHM 3: Extract an understandable vulnerability rule

Input: Treei (decision tree of example xi); PDGi (PDG of example xi)
Output: An understandable vulnerability rule Rulei of example xi
1: J ← a sequence of tokens corresponding to the intersection of the branches with large differences be-

tween regression values in Treei ;
2: BranchRule ← a set of if-then-else rules according to the branches of Treei ;
3: S ← a set of statements where the tokens in J are located;
4: Depend ← the data dependency and control dependency of statements in S according to PDGi ;
5: Rulei ← summarize an understandable rule for xi by synthesizing branchRule and Depend ;
6: return Rulei ;

because they operate at the fine granularity of program slices. VulDeePecker is based on the
BLSTM model; SySeVR is a framework for using deep learning to detect vulnerabilities, and
we instantiate it with the CNN model. Their implementations are based on Keras [10] with
Tensorflow [2] as the backend.
For VulDeePecker, we use the dataset released by Reference [27], which includes buffer error

vulnerabilities and resource management error vulnerabilities in C/C++ programs. The unit for

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:17

vulnerability detection is called code gadget, which is a small code fragment (i.e., some program
statements that are related to each other in terms of data dependency) [27]. Each code gadget is
an example, which is vulnerable (“1”) or not vulnerable (“0”). The dataset has 61,638 examples,
including 17,725 vulnerable examples and the others are not vulnerable. We randomly divide the
dataset into a training set and a test set with an 80:20 ratio. We randomly select one half of the
examples in the test set as the dataset D for interpretation purposes, and use the other half as the
dataset U for testing the effectiveness of a vulnerability detector.
For SySeVR, we use the dataset released by Reference [26], which contains 126 types of vul-

nerabilities in C/C++ programs. An example contains the semantic information induced by data
dependency and/or control dependency, while recalling that VulDeePecker only accommodates
data dependency. The unit for vulnerability detection is code gadget, and a code gadget is vulner-
able (“1”) or not vulnerable (“0”). The dataset has 420,627 examples and we randomly divide the
dataset into a training set and a test set with an 80:20 ratio. We randomly select 3,000 examples in
the test set as the dataset D for interpretation purposes, and use the other examples as the dataset
U to test the effectiveness of a vulnerability detector.

4.2 Research Questions for Evaluating the Usefulness of the Framework

Our experiments focus on answering the following three research questions.

• RQ1: Can the framework identify important tokens, and how effective is the framework in
evaluating the model impact on fidelity?

• RQ2: How effective is the framework in evaluating the end-to-end impact of fidelity?
• RQ3: Can the framework extract human-understandable rules to explain why y ← M (xi)

rather than ȳ ← M (xi)?

Evaluation Metrics. We use the following metrics to evaluate the effectiveness of a vulnerabil-
ity detector. Let |TP | be the number of examples with vulnerabilities detected correctly, |FP | be
the number of examples with false vulnerabilities detected, |FN | be the number of examples with
true vulnerabilities undetected, and |TN | be the number of examples with no vulnerabilities unde-
tected. The metric FPR = |F P |

|F P |+ |T N | represents the proportion of false-positive examples in the not

vulnerable example set. The metric FNR = |FN |
|T P |+ |FN | represents the proportion of false-negative

examples in the vulnerable example set. The metric A = |T P |+ |T N |
|T P |+ |F P |+ |T N |+ |FN | represents the pro-

portion of correctly predicted examples. The metric F1 = 2 |T P |
2 |T P |+ |F P |+ |FN | measures the overall ef-

fectiveness of the vulnerability detector. These four metrics show the effectiveness of vulnerability
detection from different perspectives. The closer FPR and FNR are to 0, the better; the closer A and
F1 are to 1, the better.
For fidelity evaluation, we choose LEMNA [20] and Kernel SHAP [30] methods for comparison.

These two methods are able to give tokens sorted by importance and distinguish between positive
and negative tokens. They have been used for PDF malware classification, function start detection
in binary reverse-engineering, and image classification, but their performance on vulnerability de-
tection is unclear. In addition, we also construct a random token selection method for comparison.
Given a target example, the random method randomly selects tokens as the important tokens.

4.3 Experiments and Results

4.3.1 Experiments for Answering RQ1. To show the effectiveness of our interpretation method
on model fidelity, we first fine-tune the interpreted vulnerability model, then evaluate the model
impact of our interpretation method and its variants, and finally compare it with typical interpre-
tation methods.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:18 D. Zou et al.

Table 2. Model Impact Evaluation Results of Our Interpretation Method and Its Variants on BLSTM

Model
Detection Fidelity Evaluation

FPR (%) FNR (%) A (%) F1 (%) FPR′ (%) FNR′ (%) A′ (%) F1′ (%) VPC
BLSTM 6.90 18.20 89.57 83.07 - - - - -
BLSTM+ 5.96 19.01 89.96 83.46 - - - - -

BLSTM′ (our method) 1.67 75.65 75.19 38.04 0.33 71.02 78.87 44.66 0.29
BLSTM′ with Factor 1 5.34 23.29 89.04 81.41 1.43 9.44 96.21 93.37 0.10
BLSTM′ with Factor 2 2.69 63.04 78.44 51.74 0.58 55.84 83.16 60.68 0.27

Table 3. Model Impact Evaluation Results of Our Interpretation Method and Its Variants on CNN

Model
Detection Fidelity Evaluation

FPR (%) FNR (%) A (%) F1 (%) FPR′ (%) FNR′ (%) A′ (%) F1′ (%) VPC
CNN 1.25 18.69 96.36 85.94 - - - - -
CNN+ 1.20 18.60 96.43 86.16 - - - - -

CNN′ (our method) 0.03 74.40 90.93 40.69 0.03 74.40 90.93 40.69 0.19
CNN′ with Factor 1 0.14 64.72 91.04 51.83 0.04 59.64 92.72 57.40 0.16
CNN′ with Factor 2 0.00 75.62 89.58 39.01 0.06 72.34 91.15 43.19 0.18

We use Algorithm 1 to search for important tokens for each target example, while instantiating
Algorithm 2 based on the beam search method [34]. We set the number of reserved token com-
binations at each loop of searching for k , dubbed “beam width” in the beam search method, to 5.
We search for N = 3 sequences of token combinations with each sequence having at least Ω = 8
tokens. We set the perturbation upper bound Θ = 5. Therefore, we can extract at least 8 important
tokens for each example. We obtain important tokens for one half of the examples in dataset D,
then delete the first r = 5 important positive tokens from those of each example in D to form a
new dataset D ′. Based on the vulnerability detector, we get BLSTM+ by using dataset D to train 1
epoch, and by using D ′ to train 1 epoch with same learning rate to obtain BLSTM′. Similarly, we
construct CNN+ and CNN′.
Tables 2 and 3 compare the effectiveness of multiple vulnerability detectors. We observe that the

vulnerability detector using BLSTM (denoted by BLSTM) achieves a relatively high effectiveness
(i.e., an 89.57% accuracy and a 83.07% F1). When we use one half of the examples in the test set to
fine-tune the BLSTM detector to obtain a new model BLSTM+, we observe that there is no much
difference between the effectiveness of the BLSTM detector and that of the BLSTM+ detector.
Similarly, there is no much difference between the effectiveness of the CNN detector and that of
the CNN+ detector. This indicates that the examples without modification do not significantly
affect the effectiveness of the model regardless the presence or absence of fine-tuning.
After using our interpreted method to identify the important tokens, we delete these impor-

tant tokens and use them to fine-tune the BLSTM model and the CNN model to obtain a BLSTM′

detector and a CNN′ detector. When compared with BLSTM+, the effectiveness of BLSTM′ is sig-
nificantly reduced, leading to a 14.77% lower accuracy and a 45.03% lower F1. This suggests that
these important tokens identified by our interpretation method are indeed important, which jus-
tifies the high fidelity of our interpretation method. The F1 of the CNN′ model drops by 49.39%,
so we can draw a similar conclusion.
To show the importance of some factors in our interpretationmethod, we vary the following two

factors: (i) involving the token combinations that consider the associations between the tokens in

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:19

the heuristic searching process (denoted by “Factor 1”) and (ii) distinguishing the positive tokens
from the negative tokens (denoted by “Factor 2”).When our interpretationmethod does not involve
Factor 1, Algorithm 1 degenerates to the method of [38]. That is, we directly perturb the tokens
in a target example xi one-by-one, and search for the top-5 tokens that can change M1 (xi) to the
largest extent. From Table 2, we observe that the effectiveness of the BLSTM′ model with Factor 1
or Factor 2 only is significantly reduced, which indicates that some of the deleted tokens are indeed
important.
Table 2 shows the model impact evaluation results of our interpretation method and its variants

on BLSTM. We observe that when compared with the interpretation method with Factor 2, our
interpretation method can significantly improve the FNR′ by 15.18%, reduce the A′ by 4.29% and
the F1′ by 16.02%. This justifies the importance of considering token associations in the process
of identifying important tokens. When our interpretation method does not involve Factor 2 (i.e.,
considering Factor 1 only), the first five tokens with the highest absolute token importance are
selected for deletion. When compared with the interpretation method considering Factor 1 only,
our interpretation method can significantly improve the FNR′ by 60.58%, reduce the A′ by 17.34%
and the F1′ by 48.71%. The VPC of our method is 2.90 times of its counterpart when considering
Factor 1 only. This may be caused by the fact that the positive tokens contribute more to the pre-
diction of an example. Since the F1′ of the BLSTM′ model with Factor 2 is less than its counterpart
of the BLSTM′ model with Factor 1, and the VPC of the BLSTM model with Factor 2 is larger
than its counterpart of the BLSTM′ model with Factor 2, we conclude that Factor 2 plays a more
important role than Factor 1 does.
Table 3 summarizes the model impact evaluation results of our interpretation method and its

variants on CNN. The target detector using CNN, denoted by CNN model, achieves a 96.36% accu-
racy and an 85.94% F1. The detection effectiveness of the CNN model is similar to its counterpart
of the CNN+ models. We observe that our interpretation method can improve the F1′ by 16.71%
when compared with the interpretation method with Factor 1, and can reduce the F1′ by 2.50%
when compared with the interpretation method with Factor 2.

Insight 1. The framework can effectively identify important tokens. Moreover, the notions of token
association (Definition 3.1) and positive tokens (Section 3.3.2) play important roles.

To compare the effectiveness of BLSTM′ (and CNN′) using different interpretation methods, we
consider the random token selection method as the baseline while the number of deleted tokens
is also set to be 5. For the Kernel SHAP method [30], we use 500 perturbed examples to train the
linear model for each target example. For LEMNA [20], we set the number of perturbed examples
to be 500, the total number of mixture components (i.e., the number of linear regression models
in the mixture regression model) to be 6, and the threshold for fused lasso (the penalty term for
accommodating feature dependencies) to be 1e-4. The time spent by our method on identifying
important tokens of 3,000 examples is 44,048 s, which is shorter than that of the LEMNA’s (49,864 s)
but longer than that of the Kernel SHAP’s (2,532 s).
Table 4 summarizes the effectiveness of BLSTM′ models using different interpretation meth-

ods. The effectiveness of BLSTM′ for our method is significantly reduced compared with other
interpretations methods, e.g., the F1 is 36.64% lower than other methods on average. Table 4 sum-
marizes the model impact results of BLSTM′ using different interpretation methods. We observe
that the VPC of our interpretation method is 1.38 times that of Kernel SHAP and 1.32 times that
of LEMNA, and the Class Change metrics of our interpretation method is significantly better than
these methods. For example, our interpretation method can improve F1′ by 29.93% compared with
Kernel SHAP and 38.58% compared with LEMNA.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:20 D. Zou et al.

Table 4. Effectiveness for Vulnerability Detection Using BLSTM with Different Interpretation Methods

Model
Detection Fidelity Evaluation

FPR (%) FNR (%) A (%) F1 (%) FPR′ (%) FNR′ (%) A′ (%) F1′ (%) VPC
Random 6.21 18.94 89.80 83.25 2.42 4.58 96.95 83.24 0.07

Kernel SHAP 1.00 46.21 84.87 68.98 0.00 40.53 88.07 74.59 0.21
LEMNA 6.27 36.27 84.34 71.80 2.70 24.09 91.01 83.24 0.22

Our method (BLSTM) 1.67 75.65 75.19 38.04 0.33 71.02 78.87 44.66 0.29

Table 5. Effectiveness for Vulnerability Detection Using CNN with Different Interpretation Methods

Model
Detection Fidelity Evaluation

FPR (%) FNR (%) A (%) F1 (%) FPR′ (%) FNR′ (%) A′ (%) F1′ (%) VPC
Random 1.18 19.52 96.32 85.66 0.54 5.12 98.90 95.44 0.05

Kernel SHAP 0.10 56.35 92.21 60.50 0.04 50.47 93.83 66.13 0.15
LEMNA 1.87 15.85 96.22 85.88 1.44 2.31 98.48 94.00 0.06

Our method (CNN) 0.05 77.31 89.39 36.90 0.03 74.40 90.93 40.69 0.19

Table 5 summarizes the effectiveness of CNN′ using different interpretation methods. We ob-
serve that the VPC of our interpretation method is 1.27 times of the Kernel SHAP’s and 3.17 times
of the LEMNA’s. For Class Change metrics like F1′, our interpretation method is better than the
other methods. The low fidelity of the existing methods is mainly due to the following two reasons.
(i) The association among tokens learned by the deep learning model may mask the importance of
tokens, which may lead to an incorrect ranking of important tokens. (ii) These methods are shack-
led by considering the output of model (M1 (x

′)) as the cumulative sum of contributions from to-
kens. However, the boundary of the interpreted example is highly non-linear, thus the contribution
of one token in slightly dissimilar contexts may be quite different.

Insight 2. The framework has a higher fidelity than existing methods, because it neither assumes
the local decision boundary is linear nor assumes the tokens are independent of each other.

4.3.2 Experiments for Answering RQ2. To investigate the effectiveness of our interpretation
method on the end-to-end impact evaluation of fidelity, we conduct the token deduction test on
the same set of interpreted target examples D as model impact evaluation, where the number of
select tokens r varies from 1 to 5.
Figure 8 plots the experimental results of the four interpretation methods (i.e., our method,

Kernel SHAP, LEMNA, and Random). We observe that our interpretation method is more effective
than the existing methods. The PCR of each of the our interpretation methods is decreases when
the amount of noise increases. In the case of BLSTM with the amount of noise being 5, the PCR
of our interpretation method reduces to 29.4% while the average PCR of the existing methods is
53.7%. This can be explained by the fact that we focus on the important tokens that contribute to
M (xi) for xi .

Insight 3. The framework is significantly more effective than existing methods in the token de-
duction test (proposed in Reference [20]) for end-to-end impact evaluation of fidelity, especially when
the amount of noise is large.

4.3.3 Experiments for Answering RQ3. To investigate whether or not our interpretation
method can extract human-understandable rules for explaining y ← M (xi), we use Step III of the

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:21

Fig. 8. End-to-end impact evaluation of fidelity for different interpretation methods.

framework to obtain rules from the examples. For each target example, the first five important
tokens are selected for noise addition, and each important token is perturbed with meaningful
noise five times. In what follows, we first show some examples and their important tokens that
are obtained by our interpretation method, then extract the vulnerability rules based on these
important tokens. We also compare these rules with that of a commercial vulnerability detection
tool, Checkmarx [1].
We use a true-positive example, a true-negative example, a false-positive example, and a false-

negative example to illustrate the first five important tokens identified by our interpretation
method as well as the trained decision tree-based regression model and a subgraph of the PDG.
These examples are selected from the datasets of VulDeePecker and SySeVR. We limit the maxi-
mum height of the decision tree to 3 for a convenience of display.
Figure 7(a) shows a true-positive example that involves a integer overflow to buffer overflow

vulnerability (CWE-680) [5] (we also use this example to show the process of extracting rules in
Section 3.5). The vulnerability is caused by the following: The index “i” of the array “intpointer”
ranges from 0 to “data”. If the integer overflow occurs for “dataBytes” in Line 8, then the size
of “intpointer” may be an unexpected value. Consequently, the assignment of “intPointer[i]”
may be beyond the assigned size of “intPointer” (Line 11). We observe that our interpretation
method identifies the important tokens, such as the unreliable external input API call “recv”, the
loop “for” statement used for writing, and the temporary variable i used for traversal, though it
also identifies the unexpected operation “-” and the API call delete. Figure 7(b) shows the trained
decision tree. We observe that the “for” loop statement and the unreliable external input API call
“recv” determine that the example is more likely to be vulnerable. Figure 7(c) shows a subgraph of
the PDG of this example. The intersection of the external input data stream received by the “recv”
and the “for” statement is the vulnerability trigger position (Line 11). Therefore, the vulnerability
rule is: If the external input from “recv” in “for” loop (e.g., the “data” in “for” loop is data-
dependent on parameter “inputBuffer” in “recv”) is used, then the example is vulnerable. This
rulemakes sense, because the vulnerability is caused by unreliable external input without checking
the boundary of the buffer. We also observe that even if the API call “recv” or the “for” statement
is not used, this example is still likely predicted as vulnerable, because the unreliable external input
“data” is not checked in the example. For the commercial vulnerability tool Checkmarx [1], this
vulnerability is a false-negative. That is, Checkmarx cannot detect this vulnerability.
Figure 9(a) shows a false-positive example whose code is from open-source software OpenSSL.

According to the results of explanation, we observe that the detector considers the example vul-
nerable mainly based on the function signatures (Line 1). Note that the detector does not consider
the memory copy API “memcpy” as dangerous (Line 10). The reason may be that the length of

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:22 D. Zou et al.

Fig. 9. A false-positive example, the trained decision tree, and a subgraph of the program dependency graph,
where the first five important tokens identified by our interpretation method are highlighted (three positive
tokens are highlighted by solid box and two negative tokens are highlighted by dashed boxes. The vulner-
ability rule is: If the type of the first parameter in function “xc2028_set_config” is a user-defined “struct,”
then the example is vulnerable.

the copy is limited by the length of the copied buffer. Figure 9(b) shows the trained decision tree.
We observe that the function signature determines that the example is likely to be vulnerable.
Figure 9(c) shows the subgraph of the PDG of this example. We summarize the vulnerability rule
as: if the type of the first parameter in function “xc2028_set_config” is a user-defined “struct,”
then the example is likely to be vulnerable. This rule does not make sense, since the function sig-
natures have nothing to do with vulnerabilities. Therefore, it may be an effective way to identify
false-positive examples by determining the rules extracted from the decision tree does not make
sense. For Checkmarx [1], this example is also a false-positive. The corresponding vulnerability
rule defined by human experts is simply matching the API call name, regardless of data flow, i.e.,
“memcpy” is a dangerous function.
Figure 10(a) shows a true-negative example that is a patched example of uncontrolled mem-

ory allocation vulnerability (CWE-789) [5]. According to the results of explanation, we observe
that the detector considers the example is not vulnerable mainly based on the memory alloca-
tion “malloc” statement and the conditional “if” statement in Lines 6 and 7. Figure 10(b) shows
the trained decision tree and Figure 10(c) shows a graph of the PDG of this example. We observe
that this example is not vulnerable, because the parameter of memory allocation API “malloc”
has been checked (using “<”) in an “if” conditional statement with “&&.” For Checkmarx [1], the
corresponding vulnerability rule defined by human experts is: If the memory size that memory

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:23

Fig. 10. The trained decision tree and subgraph of program dependency graph for a true-negative example:
the first five important tokens identified by our interpretationmethod are highlighted, involving two positive
tokens highlighted by solid line boxes and three negative tokens highlighted by dotted boxes. This example
is not vulnerable, because the parameter of memory allocation API “malloc” has been checked (using “<”) in

an “if” conditional statement with “&&.”

allocation API “malloc” uses is derived from the external input and has not been sanitized, then
it is vulnerable. This example is a false-positive for Checkmarx, which does not recognize the
complete data flow checking in the example.
Figure 11(a) shows a false-negative example (CVE-2007-5849) that is a numeric errors vulnera-

bility (CWE-189), in CUPS 1.2 through 1.3.4. It allows remote attackers to execute arbitrary code
via a crafted SNMP response that triggers a stack-based buffer overflow [4]. Specifically, the vul-
nerability is caused by the following: the value of variable “componet_len” is not checked whether
it is negative before it is passed to the parameter of “memcpy” (Line 10). According to the results
of explanation, we observe that the detector considers the example is not vulnerable mainly based
on the parameters (“buffer” and “componet_len”) used for memory copy and corresponding data
checking in Lines 9 and 10. Figure 11(b) shows the trained decision tree and Figure 11(c) shows
the subgraph of the PDG of this example. We observe that the detector classifies this example as
not vulnerable, because the parameter of memory copy “componet_len” has been checked using
“<”. But the detector does not realize that the example fails to check whether the integer variable
“componet_len” is a non-negative number. Therefore, the rule learned by the detector is not com-
plete. It may be necessary to supplement more data similar to this example to help model learning.
For Checkmarx [1], similar to Figure 9, this example is a true-positive, because Checkmarx simply
matches the API name “memcpy” without checking the data flow.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:24 D. Zou et al.

Fig. 11. The trained decision tree and subgraph of program dependency graph for a false-negative example:
the first five important tokens identified by our interpretationmethod are highlighted, involving five positive
tokens highlighted by solid line boxes and no negative tokens. This example is not vulnerable, because the
parameter “componet_len” in “memcpy” has been checked using “<” in the “if” statement.

Table 6 gives brief explanations on the prediction results of another four examples. We ob-
serve that the rules corresponding to the TP and TN examples are reasonable, while the rules
corresponding to the FP and FN examples are unreasonable. This means that potential false-
negative examples and false-positive examples can be identified by analyzing whether the rules are
convincing.
In summary, most important tokens of examples identified by our interpretation model may

meet our expectations. However, there are also some unexpected behaviors that may due to the
bias in the training data and as a result the model can not correctly understand the semantics of
the program. For the vulnerability detection tool Checkmarx [1], which relies on human experts
to define vulnerability rules, the vulnerability detection effectiveness is not good for our examples
and many vulnerability rules are one-sided. By contrast, the deep learning-based vulnerability
detector can detect the vulnerabilities from the semantic level. This leads to:

Insight 4. The framework can extract vulnerability rules that can be understood and interpreted
by a domain expert, and can help a domain expert identify some false-positive and false-negative
examples when the extracted vulnerability rules do not make a security sense.

4.3.4 User Study for Human-understandability. To evaluate the human-understandability of the
rules derived from our interpretation method, we conduct a user study by defining the following
four attributes:

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:25

Table 6. Explanation Results for Other Examples, Where Positive Tokens Are Highlighted with Red
Solid Boxes and Negative Tokens Are Highlighted with Red Dotted Boxes

Type Example Rule

TP

The detector predicts this
example as vulnerable, because
the pointer is “++” in the “for”
loop and the pointer is not at
the beginning of the buffer
when the buffer is released
(CWE-761). (Reasonable rule)

FP

The detector predicts this
example as vulnerable, because
it ends with “);.” (Unreasonable
rule).

TN

The detector predicts this
example as not vulnerable,
because a constant “20” is used
to restrict the size of system
resource, which will not cause
uncontrollable memory
allocation problems. (Reasonable
rule).

FN

The detector predicts this
example as not vulnerable,
because it ends with “;” and the
type of parameter is
“unsigned.” (Unreasonable rule).

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:26 D. Zou et al.

Fig. 12. (a) The score of the example that is averaged over the eight evaluators and the four categories,
grouped by the category it belongs to, and sorted within each category (examples 1–5 are true-positives, ex-
amples 6–10 are true-negatives, examples 11–15 are false-positives, and examples 16–20 are false-negatives).
(b) The attribute-wise scores averaged over the examples in each category.

• Conclusiveness: Whether or not a rule is conclusive in showing an example is vulnerable
or non-vulnerable. For instance, the rule described in Figure 7 is conclusive on that the
example is vulnerable.

• Conditionality: Whether or not a rule is conditioned on something that has a cybersecurity
meaning.

• Association: Whether or not the objects mentioned in a rule correspond to some code ele-
ments in the example (e.g., variables, expressions, and statements).

• Inference: Whether or not a rule’s conclusion can be inferred from on the conditions and/or
the association attributes mentioned above (when applicable).

In principle, these attributes can be quantified in a continuous fashion (e.g., quantities in [0, 1])
but their exact measurements are challenging to define and obtain. For simplicity, we focus on
their discrete definitions in {0, 1}, where “0” means that a rule is hard for a human evaluator to
understand and “1” means that a rule is easy for a human evaluator to understand.
We randomly select five examples, respectively, for the four categories of examples (i.e.,

true-positive, false-positive, true-negative and false-negative), which leads to 20 examples (i.e.,
20 rules) in total. We ask eight computer science students to measure a given rule’s human-
understandability according to the preceding four attributes, without telling themwhich examples
belong to which category. The human-understandability of a rule is averaged over 8 × 4 scores (as
each student evaluator gives four scores on each rule). Intuitively, a higher score means a higher
human-understandability. To draw insights into the impact of example category, we also “zoom
into” the examples by computing their attribute-wise average scores in each category.
Figure 12(a) plots the average score of each example, which is grouped by category and sorted

with each category. The average score is 0.88 for the true-positive examples, 0.98 for the true-
negative examples, 0.46 for the false-positive examples, and 0.73 for the false-negative examples.
We observe that the rules for interpreting true-positive examples and true-negative examples are
more human-understandable than the rules for interpreting false-positive and false-negative ex-
amples. This is actually intuitive, because true-positives and true-negatives are “natural” examples
that are more “reasonable” to the interpreter; in contrast, false-positives and false-negatives are
“unnatural” examples that are less “reasonable” to the interpreter.
Figure 12(b) “zooms into” the attribute-wise average scores in each category. We observe that

true-positive examples and true-negative examples have similar scores in terms of the four at-
tributes. However, false-positive examples have very low inference score. By looking into the raw
scores, we find that three (of the five) false-positive examples have inference score 0. This means

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:27

that false-positives are especially difficult for their corresponding rules to make a cybersecurity
sense, hinting that poor interpretability could be leveraged as an indicator of false alarm.

5 DISCUSSION

The present study has several limitations, which need to be addressed in future studies. First, we
cannot explain why a vulnerability detector thinks a token is more important than others. To an-
swer this question, we will have to completely “open the box” of a deep learning model, which is
a big challenge. Moreover, the selected tokens do not appear to have obvious cybersecurity inter-
pretations that may help explain why they are more important. This may be intertwined with the
fact that the important tokens identified by the heuristics we use may not be the most important
factors. These explain why our work only represents a first step toward the ultimate goal of inter-
pretability. Second, the generated rules are subjective, because we only achieve semi-automated,
rather than fully automated, interpretation. This means that the resulting human-understandable
vulnerability rules are manually summarized based on decision trees and PDGs. It is an outstand-
ing open problem to fully automate the extraction of human-understandable rules. This explains
why our work only represents a first step toward the ultimate goal of automated interpretability.
Third, the explanatory capability of our framework is demonstrated by only evaluating the fidelity
of important tokens, but the fidelity of the rules. How to evaluate the fidelity of rules is an interest-
ing future work. This explains why our work only represents a first step toward the ultimate goal
of high-fidelity interpretability. Fourth, our framework is a local interpretation one, because each
interpretation result corresponds to an example. Therefore, the rules generated for one example
is not applicable to interpreting other examples. It is an outstanding open problem to investigate
global interpretation methods that can produce universal vulnerability rules. This explains why
our work only represents a first step toward the ultimate goal of generic interpretability.
In terms of the validity of our evaluation, there are two important factors that need to be con-

sidered in future studies. First, we use VulDeePecker and SySeVR to demonstrate the feasibility of
our interpretation method, because their details are available to us. In principle, our interpretation
method should be equally applied to other deep learning-based vulnerability detectors. Never-
theless, more experiments need to be conducted with other detectors. Second, we focus on using
tokens as the unit when conducting code perturbation. On the one hand, there can be other units
(e.g., program statements and statement blocks) on which perturbations can be conducted. The
granularity of units may affect the fidelity and readability of the interpretations. On the other
hand, we perturb source code by deleting tokens and adding noise to tokens. There can be other
methods for code perturbation, which is left as an interesting problem for future research. There-
fore, more experiments need to be conducted to validate the interpretation method.

6 RELATEDWORK

It is worth mentioning that the problem of interpreting deep learning models is fundamentally
different from the problem of feature selection. This is because the former aims to identify key
feature values of an example (i.e., feature vector) to explain why the example is classified as such,
meaning that tokens corresponding to different features may be selected for different examples.
In contrast, feature selection algorithms (e.g., Info Gain [32] and Chi-Squared [18]) select features
based on the contribution of a feature (i.e., the corresponding tokens of all examples), and there-
fore they cannot be applied to explain the specific classification of an example. The purpose of
model interpretation is different from the purpose of generating adversarial examples [48, 50],
as interpretability is no concern in the later case. Nevertheless, there are related prior studies on
model interpretation, which can be divided into three approaches: hidden neuron analysis, model
simulation, and local interpretation.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

23:28 D. Zou et al.

Hidden Neuron Analysis. This approach aims to understand what concepts are learned by a
neural network by transforming hidden layers into some human-understandable formats. This
can be achieved by using multiple methods. The first method (e.g., References [24, 42]) estimates
feature importance by leveraging gradients and therefore suffers from the problem of vanishing
gradients. The second method estimates feature importance by leveraging the attention mecha-
nism [43, 44, 47]. AutoFocus [8] analyzes the important areas in the code in the context of code
functionality classification and is not applicable to the models investigated in the present article.
The third method uses visualization to identify the most valuable neurons with respect to a class
(e.g., using Global Max Pooling and ranked softmax weight in CNN models [52]). It is not clear
how this method can be extended to accommodate other models (e.g., RNNs). The fourth method
estimates feature importance by transforming the intermediate results of CNNs into the original
input space, so that humans can observe the contours, color features, texture features, and local
parts of the recognition across layers (e.g., DeConvNet [49]). It is not clear how this method can be
extended to accommodate the models investigated in the present article. The fifth method maps
hidden layer variables to concept representations and quantifies the degree of matching (e.g., Net-
work Dissection [7]). This method is not applicable to the present context, because programs have
no semantic hierarchies (e.g., color versus material versus object).

Model Simulation. This approach uses surrogate models with a higher explainability (e.g., linear
regression, logistic regression, and decision tree [3, 6, 11, 12, 14, 17, 23, 51]) to approximate and
interpret models with a lower explainability. For example, it is now known that piecewise linear
neural network is mathematically equivalent to, and therefore can be explained by, a series of local
linear classifiers [11]. However, this approach inevitably incurs distortion on the content learned
by a complex model when using simple model to interpret it.

Local interpretation. This approach leverages the following insight: The decision boundary of
a model may be complex, but the decision boundary with respect to a particular instance can
be simple or even linear. The methods fall into this approach: sensitivity analysis and local ap-
proximation. Sensitivity analysis aims to characterize how a model’s output is affected by varying
the model’s input [16, 25, 29, 38]. The present study belongs to this method with the innovation
that of considering the association between features. Local approximation uses a self-explanatory
machine learning model to learn the importance of the features with respect to an example [19,
20, 22, 31, 35]. For example, LIME [36] perturbs a given example to obtain a set of examples and
feed these examples to a linear regression model. This method cannot be applied to the setting
of the present article, because it assumes that the local decision boundary is linear and features
are independent, which would not hold for RNN, because it aims to learn feature dependencies
in sequential data. However, we have used experiments to compare our methods with LEMNA
[20] and Kernel SHAP [31]. It is worth mentioning that when perturb an example, we accommo-
date features associations (rather than assuming they are independent of each other), which may
affect the local decision boundary – a matter that has been encountered in a different context
[21, 45, 46].

7 CONCLUSION

We have presented a high-fidelity model interpretation framework for explaining the predictions
of deep learning-based source code vulnerability detectors. Systematic experiments show that the
framework indeed has a higher fidelity than prior methods known as Kernel SHAP and LEMNA
methods, especiallywhen features are not independent of each other (which occurs often in the real
world). In particular, the framework can produce some vulnerability rule that can be understood
by domain experts for accepting a detector’s outputs (i.e., true positives) or rejecting a detector’s

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:29

outputs (i.e., false-positives and false-negatives). We also discussed some limitations of the present
study, which indicate interesting open problems for future research.

ACKNOWLEDGMENTS

We thank the reviewers for their comments that guided us in revising and improving the article;
in particular, Section 4.3.4 was inspired by a reviewer’s comment.

REFERENCES

[1] Checkmarx. 2020. Checkmarx—Application Security Testing and Static Code Analysis. Checkmarx, Israel. Retrieved
from https://www.checkmarx.com/.

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, PeteWarden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-scale machine learning
on heterogeneous distributed systems. CoRR abs/1603.04467.

[3] Reza Abbasi-Asl and Bin Yu. 2017. Interpreting convolutional neural networks through compression. CoRR

abs/1711.02329.
[4] American Information Technology Laboratory 2020. National Vulnerability Database. American Information Tech-

nology Laboratory. Retrieved from https://nvd.nist.gov/.
[5] American Information Technology Laboratory 2020. Software Assurance Reference Dataset. American Information

Technology Laboratory. Retrieved from https://samate.nist.gov/SRD/.
[6] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. 2017. Interpreting blackbox models via model extraction. CoRR

abs/1705.08504.
[7] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017. Network dissection: Quantifying

interpretability of deep visual representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’17). IEEE, 3319–3327. DOI:https://doi.org/10.1109/CVPR.2017.354
[8] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. AutoFocus: Interpreting attention-based neural networks by

code perturbation. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE’19). IEEE, 38–41. DOI:https://doi.org/10.1109/ASE.2019.00014
[9] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. 2018. Learning to explain: An information-

theoretic perspective on model interpretation. In Proceedings of the 35th International Conference on Machine Learning

(ICML’18). 882–891. Retrieved from http://proceedings.mlr.press/v80/chen18j.html.
[10] François Chollet et al. 2015. Keras. Retrieved from https://keras.io.
[11] Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. 2018. Exact and consistent interpretation for piecewise

linear neural networks: A closed form solution. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD’18), Yike Guo and Faisal Farooq (Eds.). ACM, 1244–1253. DOI:https://
doi.org/10.1145/3219819.3220063

[12] Mark W. Craven and Jude W. Shavlik. 1995. Extracting tree-structured representations of trained networks. In Ad-

vances in Neural Information Processing Systems, David S. Touretzky, Michael Mozer, and Michael E. Hasselmo (Eds.).
MIT Press, 24–30. Retrieved from http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-
trained-networks.

[13] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose, Taeksu Kim, and Chul-Joo
Kim. 2018. A deep tree-based model for software defect prediction. Retrieved from http://arxiv.org/abs/1802.00921.

[14] Amit Dhurandhar, Karthikeyan Shanmugam, Ronny Luss, and Peder A. Olsen. 2018. Improving simple models with
confidence profiles. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS’18).
10317–10327. Retrieved from http://papers.nips.cc/paper/8231-improving-simple-models-with-confidence-profiles.

[15] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun Wu. 2019. VulSniper:
Focus your attention to shoot fine-grained vulnerabilities. In Proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI’19). 4665–4671.
[16] Ruth C. Fong and Andrea Vedaldi. 2017. Interpretable explanations of black boxes by meaningful perturbation. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV’17). IEEE, 3449–3457. DOI:https://doi.org/
10.1109/ICCV.2017.371

[17] Nicholas Frosst and Geoffrey E. Hinton. 2017. Distilling a neural network into a soft decision tree. In Proceedings

of the 1st International Workshop on Comprehensibility and Explanation in AI and ML with the 16th International

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

https://www.checkmarx.com/
https://nvd.nist.gov/
https://samate.nist.gov/SRD/
https://doi.org/10.1109/CVPR.2017.354
https://doi.org/10.1109/ASE.2019.00014
http://proceedings.mlr.press/v80/chen18j.html
https://keras.io
https://doi.org/10.1145/3219819.3220063
https://doi.org/10.1145/3219819.3220063
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks
http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks
http://arxiv.org/abs/1802.00921
http://papers.nips.cc/paper/8231-improving-simple-models-with-confidence-profiles
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1109/ICCV.2017.371

23:30 D. Zou et al.

Conference of the Italian Association for Artificial Intelligence (AI*IA’17). Retrieved from http://ceur-ws.org/Vol-2071/
CExAIIA_2017_paper_3.pdf.

[18] Karl Pearson F.R.S. 1900. X. On the criterion that a given system of deviations from the probable in the case of
a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.
London, Edinburgh, Dublin Philos. Mag. J. Sci. 50, 302 (1900), 157–175. DOI:https://doi.org/10.1080/14786440009463897
arXiv:https://doi.org/10.1080/14786440009463897

[19] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco Turini, and Fosca Giannotti. 2018.
Local rule-based explanations of black box decision systems. CoRR abs/1805.10820.

[20] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. LEMNA: Explaining deep learning
based security applications. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security

(CCS’18). 364–379. DOI:https://doi.org/10.1145/3243734.3243792
[21] Olivier Habimana, Yuhua Li, Ruixuan Li, Xiwu Gu, and Ge Yu. 2020. Sentiment analysis using deep learning ap-

proaches: An overview. Sci. China Inf. Sci. 63, 1 (2020), 111102. DOI:https://doi.org/10.1007/s11432-018-9941-6
[22] Mahdi Hajiaghayi and Ehsan Vahedi. 2018. Code failure prediction and pattern extraction using LSTM networks.

CoRR abs/1812.05237.
[23] Bo-Jian Hou and Zhi-Hua Zhou. 2018. Learning with interpretable structure from RNN. CoRR abs/1810.10708.
[24] Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Jurafsky. 2016. Visualizing and understanding neural models in NLP.

In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. 681–691. DOI:https://doi.org/10.18653/v1/n16-1082
[25] Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Understanding neural networks through representation erasure. CoRR

abs/1612.08220.
[26] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, SujuanWang, and JialaiWang. 2018. SySeVR:

A framework for using deep learning to detect software vulnerabilities. Retrieved from http://arxiv.org/abs/1807.
06756.

[27] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018. VulDeeP-
ecker: A deep learning-based system for vulnerability detection. In Proceedings of the 25th Annual Network and

Distributed System Security Symposium (NDSS’18). Retrieved from http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf.

[28] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. 2017. POSTER: Vulnerability discovery with function
representation learning from unlabeled projects. In Proceedings of the ACM SIGSAC Conference on Computer and

Communications Security (CCS’17). 2539–2541. DOI:https://doi.org/10.1145/3133956.3138840
[29] Lingqiao Liu and LeiWang. 2012. What has my classifier learned? visualizing the classification rules of bag-of-feature

model by support region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 3586–3593. DOI:https://doi.org/10.1109/CVPR.2012.6248103

[30] Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. 2018. Consistent individualized feature attribution for tree en-
sembles. Retrieved from http://arxiv.org/abs/1802.03888.

[31] Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the

Annual Conference on Neural Information Processing Systems. 4765–4774. Retrieved from http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.

[32] J. Ross Quinlan. 1986. Induction of decision trees. Mach. Learn. 1, 1 (1986), 81–106. DOI:https://doi.org/10.1023/A:
1022643204877

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019. Regularized evolution for image classifier
architecture search. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI’19). 4780–4789.
DOI:https://doi.org/10.1609/aaai.v33i01.33014780

[34] D. Raj Reddy et al. 1977. Speech understanding systems: A summary of results of the five-year research effort. De-
partment of Computer Science, Camegie-Mell University, Pittsburgh, PA (1977). Retrieved from https://kilthub.cmu.
edu/ndownloader/files/12101960.

[35] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Nothing else matters: Model-agnostic explanations
by identifying prediction invariance. CoRR abs/1611.05817.

[36] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. ”Why should I trust you?”: Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 1135–1144.
[37] Marko Robnik-Sikonja and Marko Bohanec. 2018. Perturbation-based explanations of prediction models. In Human

and Machine Learning—Visible, Explainable, Trustworthy and Transparent. Springer, Berlin, 159–175. DOI:https://doi.
org/10.1007/978-3-319-90403-0_9

[38] Marko Robnik-Sikonja and Igor Kononenko. 2008. Explaining classifications for individual instances. IEEE Trans.

Knowl. Data Eng. 20, 5 (2008), 589–600. DOI:https://doi.org/10.1109/TKDE.2007.190734

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
http://ceur-ws.org/Vol-2071/CExAIIA_2017_paper_3.pdf
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1145/3243734.3243792
https://doi.org/10.1007/s11432-018-9941-6
https://doi.org/10.18653/v1/n16-1082
http://arxiv.org/abs/1807.06756
http://arxiv.org/abs/1807.06756
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-2_Li_paper.pdf
https://doi.org/10.1145/3133956.3138840
https://doi.org/10.1109/CVPR.2012.6248103
http://arxiv.org/abs/1802.03888
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1609/aaai.v33i01.33014780
https://kilthub.cmu.edu/ndownloader/files/12101960
https://kilthub.cmu.edu/ndownloader/files/12101960
https://doi.org/10.1007/978-3-319-90403-0_9
https://doi.org/10.1007/978-3-319-90403-0_9
https://doi.org/10.1109/TKDE.2007.190734

Interpreting Deep Learning-based Vulnerability Detector Predictions Based 23:31

[39] Abhik Roychoudhury and Yingfei Xiong. 2019. Automated program repair: A step towards software automation. Sci.
China Info. Sci. 62, 10 (2019), 200103:1–200103:3. DOI:https://doi.org/10.1007/s11432-019-9947-6

[40] Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul M. Ellingwood,
and Marc W. McConley. 2018. Automated vulnerability detection in source code using deep representation learning.
In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA’18). 757–762.
DOI:https://doi.org/10.1109/ICMLA.2018.00120

[41] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert,
Lucas Baker, Matthew Lai, and Adrian Bolton. 2017. Mastering the game of go without human knowledge. Nature
550, 7676 (2017), 354–359. DOI:https://doi.org/10.1038/nature24270

[42] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep inside convolutional networks: Visualising
image classification models and saliency maps. In Proceedings of the 2nd International Conference on Learning Repre-

sentations (ICLR’14). Retrieved from http://arxiv.org/abs/1312.6034.
[43] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, and Alexander M. Rush.

2019. Seq2seq-Vis: A visual debugging tool for sequence-to-sequence models. IEEE Trans. Vis. Comput. Graph. 25, 1
(2019), 353–363.

[44] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel, and
Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of

the 32nd International Conference on Machine Learning (ICML’15). 2048–2057. Retrieved from http://proceedings.mlr.
press/v37/xuc15.html.

[45] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. 2013. Cross-layer detection of malicious websites. In Proceedings

of the 3rd ACM Conference on Data and Application Security and Privacy (CODASPY’13). 141–152. DOI:https://doi.org/
10.1145/2435349.2435366

[46] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. 2014. An evasion and counter-evasion study in malicious web-
sites detection. In Proceedings of the IEEE Conference on Communications and Network Security (CNS’14). 265–273.
DOI:https://doi.org/10.1109/CNS.2014.6997494

[47] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and Eduard H. Hovy. 2016. Hierarchical
attention networks for document classification. In Proceedings of the Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies. 1480–1489. DOI:https://doi.org/10.18653/
v1/n16-1174

[48] Noam Yefet, Uri Alon, and Eran Yahav. 2019. Adversarial examples for models of code. Retrieved from http://arxiv.
org/abs/1910.07517.

[49] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In Proceedings of the
13th European Conference on Computer Vision (ECCV’14). 818–833. DOI:https://doi.org/10.1007/978-3-319-10590-1_53

[50] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating adversarial examples for holding
robustness of source code processing models. In Proceedings of the 34th AAAI Conference on Artificial Intelligence

(AAAI’20). AAAI Press, 1169–1176. Retrieved from https://aaai.org/ojs/index.php/AAAI/article/view/5469.
[51] Quanshi Zhang, Yu Yang, Ying Nian Wu, and Song-Chun Zhu. 2018. Interpreting CNNs via decision trees. CoRR

abs/1802.00121.
[52] Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. 2016. Learning deep features for dis-

criminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16).
IEEE, 2921–2929. DOI:https://doi.org/10.1109/CVPR.2016.319

[53] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability iden-
tification by learning comprehensive program semantics via graph neural networks. In Proceedings of the Annual

Conference on Neural Information Processing Systems (NeurIPS’19). 10197–10207.
[54] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. 2019. μVulDeePecker: A deep learning-based system

for multiclass vulnerability detection. IEEE Trans. Depend. Secure Comput. (2019). DOI:https://doi.org/10.1109/TDSC.
2019.2942930

Received March 2020; revised October 2020; accepted October 2020

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 23. Pub. date: March 2021.

https://doi.org/10.1007/s11432-019-9947-6
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/1312.6034
http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html
https://doi.org/10.1145/2435349.2435366
https://doi.org/10.1145/2435349.2435366
https://doi.org/10.1109/CNS.2014.6997494
https://doi.org/10.18653/v1/n16-1174
https://doi.org/10.18653/v1/n16-1174
http://arxiv.org/abs/1910.07517
http://arxiv.org/abs/1910.07517
https://doi.org/10.1007/978-3-319-10590-1_53
https://aaai.org/ojs/index.php/AAAI/article/view/5469
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/TDSC.2019.2942930
https://doi.org/10.1109/TDSC.2019.2942930

