
Too Subtle to Notice: Investigating
Executable Stack Issues in Linux Systems

Hengkai Ye
The Pennsylvania State University

hengkai@psu.edu

Hong Hu
The Pennsylvania State University

honghu@psu.edu

Abstract—Code injection was a favored technique for attackers
to exploit buffer overflow vulnerabilities decades ago. Subse-
quently, the widespread adoption of lightweight solutions like
write-xor-execute (W⊕X) effectively mitigated most of these
attacks by disallowing writable-and-executable memory. However,
we observe multiple concerning cases where software developers
accidentally disabled W⊕X and reintroduced executable stacks to
popular applications. Although each violation has been properly
fixed, a lingering question remains: what underlying factors
contribute to these recurrent mistakes among developers, even in
contemporary software development practices?

In this paper, we conduct two investigations to gain a
comprehensive understanding of the challenges associated with
properly enforcing W⊕X in Linux systems. First, we delve
into program-hardening tools to assess whether experienced
security developers consistently catch the necessary steps to
avoid executable stacks. Second, we analyze the enforcement of
W⊕X on Linux by inspecting the source code of the compilation
toolchain, the kernel, and the loader. Our investigation reveals that
properly enforcing W⊕X on Linux requires close collaboration
among multiple components. These tools form a complex chain of
trust and dependency to safeguard the program stack. However,
developers, including security researchers, may overlook the subtle
yet essential .note.GNU-stack section when writing assembly code
for various purposes, and inadvertently introduce executable
stacks. For example, 11 program-hardening tools implemented as
inlined reference monitors (IRM) introduce executable stacks
to all “hardened” applications. Based on these findings, we
discuss potential exploitation scenarios by attackers and provide
suggestions to mitigate this issue.

I. INTRODUCTION

Code injection was a mainstream method for exploiting
memory-safety issues (e.g., buffer overflow) decades ago [70],
[67], [16], [83], [57]. Attackers place malicious payloads, called
shellcode, in controllable memory regions and corrupt control
data (e.g., return addresses and function pointers) to divert the
control flow and execute the shellcode. At that time, stack was
the ideal place to store shellcode, since attackers could leverage
a single buffer overflow vulnerability to inject shellcode and
corrupt the return address, both of which are on the stack.

Among all countermeasures against code-injection attacks,
Write-XOR-Execute, also known as W⊕X, is one of the most
straightforward and effective mechanisms [58], [60]. W⊕X al-
lows every memory page to be either writable or executable, but
not both at the same time. In this case, after an attacker inserts
the malicious shellcode on the writable stack, the processor
(CPU) will refuse to execute it and raise a segmentation fault.
Thanks to its solid security benefit and negligible overhead,
W⊕X is widely deployed in modern computers regardless of
OSes, CPUs, and architectures. Attackers have to leverage
more sophisticated code-reuse techniques [79], [19], [77] to
achieve malicious goals, like remote code execution (RCE).

However, we have noticed multiple alarming cases where
software developers accidentally disabled the W⊕X protection
in their programs [14], [33], [20], [28], [8], [55], [13], [10],
[15], [12], [34], [4], [3], [9], [11]. Victims include popu-
lar applications such as Electron [33], VSCode [14], and
CockroachDB [34]. Several cases just happened in the past
year. These cases are unexpected since W⊕X is a mature
technique and should have been enabled automatically by
default. Investigations revealed that W⊕X was disabled due
to the inclusion of hand-written assembly files that missed a
section directive: .section .note.GNU-stack,"",@progbits.
This directive declares a .note.GNU-stack section to indicate
the stack should not be executable. Since the meaning of
this directive is not straightforward (some called it magic
incantation [34]), developers failed to connect it to W⊕X.
When manually writing assembly code for various reasons, they
missed this directive and inadvertently made the application
stack executable. In this paper, we term this problem BADASS.

Although these issues have been successfully fixed, we are
curious about why developers occasionally miss this directive in
hand-written assembly. Is it merely because general developers
pay less attention to security features, or the implementation of
W⊕X is too subtle for developers to catch? A comprehensive
understanding of this problem is important for us to avoid
similar security downgrades in the future. In this paper, we
conduct investigations to reveal the underlying reason.

In the first step, we try to figure out whether experienced
security researchers are more aware of this issue than general
developers. If security researchers also make similar mistakes,
we should not simply attribute the issue to general developers.
We choose 21 popular inlined reference monitors (IRM) [41],
[39], [40], [95] published at top-tier conferences or devel-

Network and Distributed System Security (NDSS) Symposium 2025
23–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.23924
www.ndss-symposium.org

oped by recognized companies for investigation. We choose
IRMs as our targets for three reasons. First, IRMs such as
software-based fault isolation (SFI) [89], [59], [61], [94] are
implemented by experienced security researchers, who have a
comprehensive understanding of W⊕X and a strong willingness
to adopt security mechanisms. Second, compared with other
security tools, IRMs are prone to BADASS issues since they
commonly adopt hand-written assembly code to provide strong
security guarantees. Third, since IRMs are developed to protect
general applications, any implementation mistake may lead to
catastrophic consequences to not a single, but many programs.

We use each IRM to transform a simple program and
check the stack permission of the running process. To our
surprise, 11 out of 21 tested IRMs disable W⊕X, which means
the hardened program will have an executable stack. This
apparently violates the design goal of IRMs — regardless
of security guarantees, hardening techniques should neither
weaken nor disable existing defenses. The result indicates that
the section-definition directive of W⊕X is indeed too subtle. It
is easy for developers, even experienced security researchers,
to overlook it and make mistakes in hand-written assembly.

BADASS Issues in IRMs We identify BADASS issues from
four CFI solutions, two in-process isolation techniques, and five
binary reassemblers. MCFI [64], RockJIT [65], and πCFI [66]
suffer from this issue since they include an empty assembly file
in the program runtime. Since CFI prevents most illegal jumps
to stack shellcode, BADASS makes the exploitation easier only
if attackers can bypass the CFI, like through advanced ROP
attacks [77]. PathArmor [88], ERIM [87], and Donky [76]
introduce executable stacks due to dynamically loaded shared
libraries with BADASS issues. PathArmor enforces CFI at
the entries of sensitive syscalls; with BADASS, attackers can
leverage stack shellcode to clean up invasion trajectory and
help bypass CFI checks. ERIM adopts Intel MPK to provide
lightweight in-memory isolation; with BADASS, attackers
can inject and execute any MPK instructions to disable the
isolation. Five binary reassemblers generate assembly files
without .note.GNU-stack definitions. Unless users specify
extra options to enable W⊕X, the reassembled program will
have an executable stack. We have reported our findings to the
corresponding IRM developers. Ddisasm [42] fixed this issue
before our report. Developers of the other 10 tools confirmed
the executable stack issue. Authors of six tools have fixed this
problem and another commits to patch the code.

W⊕X Enforcement Analysis. In the second step, we
investigate the W⊕X implementation to understand and re-
veal its subtlety. We conduct a comprehensive inspection of
Linux W⊕X enforcement, especially in the GNU compilation
toolchain – the default compiler on Linux systems. Our
findings are as follows. 1 If any C/C++ code contains address-
taken nested functions that access local variables of enclosing
functions [43], GCC will produce programs with executable
stacks. At runtime, the program process will insert trampoline
code on the stack and execute it to prepare arguments for
nested functions [44]. 2 If an assembly file misses the

special directive, .section .note.GNU-stack,"",@progbits,
the process will have an executable stack. 3 If an object file
contains section .note.GNU-stack with flag SEC_CODE, or if
it misses such a section, the process will have an executable
stack. 4 If a binary contains segment PT_GNU_STACK with flag
PF_X, or if it misses such a segment, the process will have
an executable stack. Depending on the CPU, architecture and
kernel version, all readable memory regions of the process could
be executable due to the feature READ_IMPLIES_EXEC [75]. 5 If
the PT_GNU_STACK segment of a shared library has the BADASS
issue, the loader may make the process stack executable.

Based on our analysis, we find that most BADASS issues
in popular applications and studied IRMs are caused by 2
missing the definition of .note.GNU-stack in assembly files.
Generalization of BADASS. Our investigation shows that
even experienced security researchers may overlook the subtle
design of W⊕X and introduce executable stacks. Inspired
by this finding, we examine five additional practical security
mechanisms to see whether they are also missed by security
developers, specifically, PIE, RELRO, stack canary [32], FOR-
TIFY_SOURCE [50] and Intel CET [69]. We adopt the same
investigation methodology and get two new findings. First, three
CFI solutions, MCFI, RockJIT and πCFI, accidentally disable
FORTIFY_SOURCE, a security feature in GNU C library that
detects a set of security vulnerabilities. Second, all IRM imple-
mentations that disable W⊕X also turn Intel CET off. Similar to
BADASS, the root cause is the inclusion of assembly files that
lack section .note.gnu.property, which is required to enforce
Intel CET. Creating .note.gnu.property requires a subtle as-
sembly directive, .section .note.gnu.property, "a", which
is easy for developers to miss in hand-written assembly code.

In summary, we make the following contributions.

• We investigate the BADASS issue among popular inlined
reference monitors (IRMs) 1 and find that many security
researchers miss the subtle implementation of W⊕X and
introduce executable stacks to hardened programs.

• We conduct an in-depth analysis of W⊕X enforcement
on Linux systems, reveal the root cause of BADASS and
demonstrate subtle code regions.

• We extend BADASS to other practical defenses and find
that IRM implementations may accidentally weaken other
techniques such as FORTIFY_SOURCE and Intel CET.

Roadmap. We organize the rest of the paper as follows. In §II,
we introduce the background of code injection and W⊕X and
define our research problem. We present the overview of our
research methodology in §III. We investigate the executable
stack issue in program-hardening tools in §IV. We disclose the
details of enforcing W⊕X on Linux through code analysis in
§V. We extend the stack issue and identify two more problems
in §VI. In §VII, we illustrate the potential vector for attackers
to deliberately introduce executable stacks, and discuss possible
mitigation strategies. §VIII concludes the paper.

1Detailed instructions for the IRM investigation can be found at
https://github.com/psu-security-universe/badass.

2

https://github.com/PSU-Security-Universe/badass

II. BACKGROUND AND PROBLEM

In this section, we first introduce code-injection attacks and
its countermeasure, W⊕X. Then, we define BADASS based on
real-world cases and present our research problem.

A. Code Injection and W⊕X

Code injection is a well-known technique to exploit memory
errors such as buffer overflow and use-after-free bugs [70],
[67], [16], [83], [57]. To launch an attack, hackers first insert
malicious shellcode into the memory space of a vulnerable
program, and then divert the execution to the injected code.
This technique was widely used in system hacking and cracking
decades ago. For example, the notorious Morris Worm first
injects a piece of VAXen shellcode on the stack of a vulnerable
fingerd process. It then overwrites the return address to redirect
the execution to the shellcode, which effectively starts a remote
shell connection by invoking execve(“/bin/sh”,0,0) [81].

To prevent code-injection attacks, researchers proposed
Write-XOR-Execute, or W⊕X [58], [60]. This property requires
every memory page can either be writable or executable, but not
both at the same time. With this protection, writable memory
regions such as stack, heap, and .bss section are no longer
executable. Even if attackers inject shellcode into such regions,
attempts to execute the code will trigger a segmentation fault
as the processor refuses to run these instructions. Enforcing
W⊕X requires support from multiple components, including
CPU and operating system (OS). The CPU reserves the most
significant bit of the page table entry as the NX bit, and the
OS sets the proper NX bit for each page. If the bit is zero,
the CPU can execute code from that page. Otherwise, the
page is non-executable. On the x86 architecture, AMD first
implemented NX bit in 2003 and Intel followed later with a
different name, XD bit. Mainstream operating systems such as
Windows, Linux and OpenBSD started to support W⊕X.

Thanks to its strong security benefit and negligible overhead,
modern OSes and mainstream processors have deployed W⊕X
to prevent shellcode injection attacks. The adoption of W⊕X
changed the rules of the in-memory war [83]. Attackers had
to seek new opportunities from existing code sections and
invented a set of code-reuse methods to achieve arbitrary code
execution, like return-to-libc (ret2libc) [63] and return-oriented
programming (ROP) [79], [19], [77], [23]. However, code-
reuse attacks are more complicated than code injection. For
example, to use the method of ROP, attackers must orchestrate
a large number of small code gadgets to construct meaningful
payloads [78]. To minimize the challenge, modern exploitations
commonly start with a few gadgets to disable W⊕X and create
writable-and-executable pages, and then utilize code injection
to achieve final goals [83], [97]. Security researchers also
moved their attention to prevent various code-reuse attacks,
like through address randomization [71], control-flow integrity
(CFI) [1], [21] and code-pointer integrity (CPI) [53], [56].

B. Problem Definition

While W⊕X is a mature defense technique and has been
deployed extensively, we have observed numerous concerning

instances where software developers inadvertently deactivated
the W⊕X protection within their programs [14], [33], [20],
[28], [8], [55], [13], [10], [15], [12], [34], [4], [3], [9], [11],
[62], [5]. Such unexpected security downgrades have been
noted even within widely used applications, including those of
recent occurrence in the year 2023. For example, CockroachDB,
a popular commercial distributed database management system
(DBMS) [86], used to contain an executable stack due to
accidentally introducing an assembly file [34]. Electron, a
software framework to build cross-platform desktop applica-
tions, also reported the executable stack issue [33]. Many
downstream programs developed on top of Electron get affected,
like Visual Studio Code, Mattermost, Wire Desktop, and
Rocket Chat. By reviewing discussions on these reports, we
identify that hand-written assembly files without the section-
definition directive .section .note.GNU-stack,"",@progbits
are the culprit. These discussions also mention that this problem
stems from historical design choices for compatibility purposes
and resides in the large complicated code base. In this paper,
we term this problem BADASS.

Definition II.1 (BADASS). On Linux systems, if
the code of an application contains any assembly
file that misses the section-definition directive
.section .note.GNU-stack,"",@progbits, the application
binary generated by the GNU compilation toolchain will have
an executable stack. Specifically, when we load such a binary
into memory for execution, W⊕X will be turned off and the
process stack will be both writable and executable. In the
worst case, all readable memory regions of the process will
also be executable, including writable heap, .bss and .data
sections. We refer to this issue as BADASS.

The writable-and-executable memory region introduced
by BADASS will streamline the bug-exploitation process.
Attackers can directly inject malicious code into the vulnerable
process like decades ago [70], [67], [16], [57]. Although they
still need to bypass protections in other phases, BADASS
eliminates the need for laborious code-reuse attacks that involve
tedious searching and chaining of code gadgets [79], [19], [77].

Figure 1 demonstrates the BADASS issue. File hello_world.c
is a simple C program that merely waits for a character
from the command line and exits immediately once the
input is received. File a.s is an empty assembly file without
any malicious code. When we compile hello_world.c alone
through GCC, the generated binary hello_world has a readable
and writable stack, but not executable, shown as rw- from
the process memory mapping. However, when we include
the empty assembly file a.s into the compilation process,
the generated binary will have a readable, writable and
executable stack, shown as rwx in the memory mapping. In
fact, assembly instructions inside a.s do not matter. The order
of compilation also makes no difference. The generated binary
will have an executable stack unless the assembly file a.s
explicitly includes the following section-definition directive:
.section .note.GNU-stack,"",@progbits.
Research Problem. BADASS is not entirely obscure to the

3

$ cat hello_world.c
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 getchar();
 return 0;
}
$ # a.s is an empty assembly file
$ cat a.s

$ ###################################### compile using gcc
$ gcc hello_world.c -o hello_world
$./hello_world
^Z[1] + Stopped ./hello_world
$ cat /proc/$(pgrep hello_world)/maps | grep stack
7ffec4016000-7ffec4037000 rw-p 00000000 00:00 0 [stack]
$ # ^^ readable and writable

$ kill $(pgrep hello_world)
$ ############################# compile with a.s using gcc
$ gcc hello_world.c a.s -o hello_world
$./hello_world
^Z[1] + Stopped ./hello_world
$ cat /proc/$(pgrep hello_world)/maps | grep stack
7ffd8d5a0000-7ffd8d5c1000 rwxp 00000000 00:00 0 [stack]
$ # ^^^ readable, writable and executable

 Fig. 1: Demonstration of BADASS. When compiled with an empty

assembly file a.s, the process has an executable stack.

public, as it has been disclosed and discussed several times
within small groups [54], [84], [6], [7], [92]. Nonetheless,
our focus lies in understanding why developers occasionally
overlook it and introduce security downgrades even in widely
used applications, including recent occurrences. Understanding
the root cause is both intriguing and imperative for us to take
proper actions and avoid similar issues in the future. We propose
conjectures with two potential reasons.

• Developer unawareness. One potential explanation is that
most developers primely concentrate on program functionali-
ties and often pay limited attention to even fundamental secu-
rity features such as W⊕X. For example, one CockroachDB
developer created an empty assembly file simply to make
the optimization work [34]. Although the file introduced an
executable stack, the corresponding commit passed the code
review, was merged into the code base smoothly, and lurked
for four months. Another developer caught this problem
only when the application failed to run on SELinux due to
the policy execmem, which prohibited mapping a region of
memory with both PROT_WRITE and PROT_EXEC [34]. If this
is the main reason, we should train normal developers to be
more aware of security features.

• Subtlety in W⊕X enforcement. Another possibility is that
the design and implementation of W⊕X make it easy for
developers to overlook it, especially in hand-written assembly
code. Even if developers keep security features in mind and
follow all default system settings, the compiled binary will
have an executable stack. If this is the root cause, we may
need to rethink the enforcement of W⊕X to improve the
program security in default settings.

In this paper, we will investigate the BADASS issue to figure
out the main root cause. Our goal is to help alarm developers
and the community to avoid similar issues in the future.

III. OVERVIEW

Now we have two ways to explain why BADASS happens
frequently and recently in popular applications. Based on our
understanding of the problem, we design two comprehensive
investigations to identify the main root cause out of these two.

Our first investigation aims to verify that general software
developers primarily focus on program functionalities and
lack security awareness. However, measuring the security
awareness of general developers is a challenging task and
may produce subjective results. Therefore, we try to verify this
conjecture from a different perspective by answering another
question, i.e., whether experienced security developers also
miss the obscure assembly directive and introduce executable
stacks to security applications. Our observation is that security
developers usually possess a thorough understanding of security
mechanisms, pay special attention to security features, and
demonstrate a strong willingness to strengthen application
security rather than compromise it. If they also overlook the
BADASS issue, we cannot simply attribute this problem to
developer’s unawareness of security features. We will explain
the investigation methodology, present our findings and discuss
the security implications in §IV.

The second investigation is to understand whether the en-
forcement of W⊕X contains subtle design and implementation
details that are challenging for developers to notice. While
missing the section-definition directive seems to be a common
reason for BADASS, we are unclear how this assembly section
affects the executable permission of the process stack. In §V,
we will follow the program lifetime to investigate the GNU
compilation toolchain and the Linux kernel to reveal the subtlety
within the W⊕X enforcement. To the best of our knowledge,
this is the first in-depth investigation of this issue.

IV. INVESTIGATING SECURITY TOOLS

In this section, we plan to investigate the BADASS issue
in security applications developed by experienced security
programmers or researchers. However, security tools encompass
a wide range of software and hardware solutions to protect
systems, networks, and even data. To reduce the scope of
analysis, we define three criteria to help identify security
applications that are most related to BADASS. It is worth
mentioning that our investigation aims to identify concrete
cases where security developers miss the critical assembly
line and introduce executable stacks. Therefore, we do not
have to cover all security productions. 1 The tool should
utilize assembly code for various purposes, such as enhancing
security or improving performance. Based on our observation
of previous BADASS issues, incorrect handling of assembly
code is the main reason for introducing executable stacks.
2 The tool should interact with native ELF binaries, like
generating new binaries or modifying existing ones. 3 It will
be good if the tool is open-sourced and works on Linux. This
property will make our investigation easier. After examining
various types of security tools, we find that inlined reference
monitor (IRM) aligns with our expectations [41], [39], [40],
[95]. Next, we first provide a brief introduction to IRMs and

4

Source
code

Compilation

Binary Lifting

Hardened
binary

Intermediate
representation

Security
instrumentation

Security
runtime

Fig. 2: Overview of IRM implementation

explain why they are ideal targets for BADASS investigation
(§IV-A); then, we introduce our methodology for investigating
IRMs (§IV-B); at last, we present our findings and discuss the
security implications (§IV-C).

A. Inlined Reference Monitor (IRM)

Inlined reference monitor (IRM) generally injects security
checks into subject programs to enforce security properties [41],
[39], [40], [95]. It has been widely adopted to enforce various
security policies, especially to block sophisticated and powerful
in-memory attacks [79], [19], [77], [49]. For example, IRMs
are used to enforce control-flow integrity (CFI) [64], [65], [66],
[88], a principled solution to prevent control-flow hijacking
attacks [21], [1], [96]. First, CFI solutions take various static
or dynamic analyses to infer legal targets for each indirect
call, jump and return instruction (or icall for short). Second, at
runtime, CFI checks whether each icall instruction jumps to one
of the inferred legal targets; if not, it reports the CFI violation.
Researchers commonly adopt IRM in the second step, which
inserts security checks before icall instructions to compare
with predefined targets. Software-based fault isolation (SFI) is
another security policy commonly implemented using IRM [89],
[59], [61], [94]. It splits the memory space into multiple trusted
or untrusted domains, and inserts security checks before every
memory-access or icall instruction to ensure that the access is
confined to the corresponding domain.

Figure 2 illustrates two general methods for IRM to harden
programs. If the source code is available, we can utilize the
compiler to insert checks during compilation. Particularly, we
use compiler analysis to generate informative metadata, like
data flow, and leverage these metadata to insert necessary
checks into proper code locations. If the source code is
unavailable, we have to inject checks through binary-rewriting
techniques [72], [68]. In this case, we usually first lift program
binaries to a higher-level representation, like assembly [91],
[36], [37], [42], customized IR [93], or source code [17]. Then,
we insert security checks into proper locations and compile
the instrumented code into hardened binaries. Regardless of
the method, the injected code will perform security checks
and report detected errors during the program execution. Other
than security instrumentation, IRMs commonly adopt special
runtime to assist with checks and reports. A runtime is usually
developed in native languages (e.g., C/C++) or assembly, and
gets compiled into the object file or shared library.
Ideal Targets for BADASS Investigation. IRMs are the
ideal targets of BADASS investigation for three reasons.
1 IRMs, such as software-based fault isolation (SFI) and
control-flow integrity (CFI), are designed and implemented by
experienced security researchers or well-known commercial
companies to bolster program security. Compared to general

developers, security researchers are anticipated to possess a
more thorough understanding of W⊕X and are more sensitive
to security violations like disabling W⊕X. Therefore, if we
can find BADASS in IRMs, that will be a strong demonstration
of the challenge to notice BADASS. 2 Based on existing
BADASS issues, we speculate the usage of assembly code
is positively correlated with the introduction of BADASS.
IRMs commonly adopt hand-written assembly code for various
purposes, like providing a strong security guarantee [56], lifting
a binary into an intermediate representation [91], [37], [80] or
implementing a runtime for instrumentation [64], [66], [65].
For example, ERIM, an MPK-based isolation technique, uses
an assembly file to hinder untrusted components from creating
executable memory [87]. 3 IRMs are designed to protect
general applications. If an IRM suffers from BADASS, any
hardened applications may also be affected. This situation is
more severe than BADASS in a single application.

B. Methodology

We collect 21 open-source IRMs implemented by recognized
security researchers and developers, including nine binary
rewriters, eight CFI solutions, two in-process isolation methods,
one SFI solution, and one binary debloating tool, as shown in
Table I. Most developers of these tested IRMs have published
their papers at top-tier academic conferences on security,
system, or programming language. 17 tools are proposed by
academic research groups and the other 4 tools, specifically,
LLVM CFI [85], Android kCFI, Wasmtime and Ddisasm [42]
are developed by well-known security companies such as
Google, GrammaTech, and Bytecode Alliance. Android kCFI is
implemented based on LLVM CFI and has been enabled by all
Android devices since 2018. Wasmtime is a popular runtime for
WebAssembly and has deployed various sandboxing strategies.
Another ever-popular IRM is NaCl proposed by Google [94].
However, it has been deprecated for years and we did not find
a good method to build and run it on modern systems. Four
IRMs, binCFI [98], ERIM [87], Ramblr [90] and Ddisasm,
received Distinguished Paper Awards from top-tier security
conferences. ERIM was also awarded the Facebook Internet
Defense Prize. Uroboros [91], a reassembleable disassembler, is
adopted by two teams among seven finalists during the DARPA
Cyber Grand Challenge (CGC) competition [35]. Ramblr is
developed and also used in CGC by team Shellphish and has
been integrated into angr [80]. MCFI, RockJIT, and πCFI are
used in Google CTF 2017.

Our investigation starts with a simple program. For IRMs
that work on program source code, we follow tutorials on
their official websites to compile the program and obtain a
hardened binary. If the IRM works on binaries, we first prepare
a binary with W⊕X enabled and apply the IRM to get a
hardened version. After obtaining the hardened binary, we run
the program and check the in-memory stack permission. If
the hardened process has any writable-and-executable memory
region while the original version does not, we consider the
corresponding IRM suffers from the BADASS issue. We then
inspect the IRM code to figure out the defective assembly file.

5

TABLE I: Inlined reference monitors for investigation. For LLVM CFI and Wasmtime, the link is for the whole project repository. binCFI
and SAFER are released on their own websites (not Github). �: Distinguished Paper Award; è: Facebook Internet Defense Prize

Category IRM Version Ref. Conference Year Award Citation Stars Forks Assembly BADASS? Status

Control
Flow

Integrity
(CFI)

binCFI - [98] USENIX SEC 2013 � 775 - - yes no -
MCFI 7c9de0c [64] PLDI 2014 313 41 7 yes yes fixed
LLVM CFI 11 [85] USENIX SEC 2014 542 26.9k 11k no no -
RockJIT 7c9de0c [65] CCS 2014 165 41 7 yes yes fixed
πCFI 7c9de0c [66] CCS 2015 234 41 7 yes yes fixed
PathArmor 9879a85 [88] CCS 2015 334 45 15 yes yes won’t fix
µCFI 87cfea3 [48] CCS 2018 137 17 4 yes no -
Android kCFI 16-6.1 - - 2018 - - - no no -

SFI Wasmtime ab2aae5 - - 2017 - 14.8k 1.2k no no -

Debloating Razor c61403f [74] USENIX SEC 2019 121 39 8 yes no -

Isolation ERIM f1d4a28 [87] USENIX SEC 2019 �è 250 13 6 yes yes fixed
Donky d97ca2a [76] USENIX SEC 2020 93 14 5 yes yes no risk

Binary
Rewriting

Uroboros c074cca [91] USENIX SEC 2015 168 187 56 yes yes checking
Ramblr 1ef5509 [90] NDSS 2017 � 179 249 46 yes yes will fix
Multiverse 1808198 [18] NDSS 2018 136 298 33 no no -
Egalito c5bccb4 [93] ASPLOS 2020 101 207 37 no no -
RetroWrite d722ec5 [37] IEEE S&P 2020 174 655 78 yes yes fixed
E9Patch 5bb07ff [38] PLDI 2020 75 937 65 no no -
Ddisasm 1.5.4 [42] USENIX SEC 2020 � 89 637 58 yes yes fixed

1.8.0 no -
ARMore d722ec5 [36] USENIX SEC 2023 4 655 78 yes yes fixed
SAFER - [73] USENIX SEC 2023 1 - - yes no -

C. Result and Implication

Our investigation reveals unexpected results, where 11 out
of 21 IRMs have the BADASS issue and introduce executable
stacks to hardened applications. We find the problems across
three categories, including four CFI solutions (MCFI, RockJIT,
πCFI and PathArmor), two in-process isolation methods (ERIM
and Donky), and five binary rewriters (Uroboros, Ramblr,
RetroWrite, Ddisasm and ARMore). In the category of binary
rewriting tools, all rewriters decompile binary code into
reassembleable files, but none of them contains the essential
.note.GNU-stack section to disable executable stacks. This
result shows that even experienced security researchers also
miss the subtle design of W⊕X and introduce BADASS issues.
Therefore, our first conjecture is likely invalid — we cannot
simply attribute existing BADASS issues to the unawareness
of security features among general developers.

We also assess the impact of an executable stack on the
hardened program in the context of the proposed security
policy, such as CFI and SFI. MCFI/RockJIT/πCFI are three
CFI solutions that require each icall instruction to jump to one
predefined legitimate location. Since in most cases, the process
stack region does not contain any valid code, no stack address
is a valid target for any icall. Only if attackers already have
bypassed MCFI/RockJIT/πCFI using advanced exploitation
methods, like control-flow bending [22] or counterfeit object-
oriented programming [77], BADASS will make the subsequent
exploitation easier. Therefore, the security impact of BADASS
on MCFI/RockJIT/πCFI is limited. Nevertheless, developers of
these tools have fixed this issue immediately after our report.

PathArmor is a practical context-sensitive CFI solution [88].
At the entry of security-sensitive syscalls (e.g., execve that
executes a new program), it will pause the execution and verify
the last 16 icalls are all valid. It utilizes hardware features to

accelerate branch recording and verification. Since PathArmor
only checks the last 16 icalls before each syscall, attackers
may bypass the protection by building a long gadget chain
that contains at least 16 valid icalls at the end. This is usually
believed challenging since attackers have to guarantee memory
accesses within 16 icalls are all legitimate to avoid crashes.
However, with an executable stack, such advanced attacks
are more practical. In particular, attackers can use a memory
error to jump to the shellcode on the stack, where they can
execute any instructions to update the memory content properly.
As long as these instructions do not trigger security-critical
syscalls, PathArmor will not conduct any security checks. After
manipulating the memory to the expected content, attackers can
invoke the long gadget, where all memory accesses within the
last 16 icalls are guaranteed legitimate and the execution will
reach critical syscalls. Since the last 16 icalls are all legitimate,
PathArmor will let the execution continue. In this scenario,
the executable stack provides an effective method to bypass
PathArmor, reducing the security of the hardened program.
PathArmor developers confirmed the executable stack and the
security risk. However, they decide not to fix the problem since
the code is not maintained by anyone anymore.

ERIM and Donky are two intra-process isolation mech-
anisms [87], [76]. ERIM utilizes the hardware feature, Intel
memory protection keys (MPK), to achieve efficient permission
control. As part of the isolation enforcement, ERIM stati-
cally identifies and eliminates all unexpected MPK-related
instructions from the code section, and dynamically prevents
untrusted components from creating executable memory regions.
However, with an executable stack, attackers can inject any
shellcode on the stack, including all MPK-related instructions.
They can update the permission settings at runtime, and
effectively break the proposed in-process isolation. ERIM

6

http://www.seclab.cs.sunysb.edu/seclab/bincfi/
https://github.com/mcfi/MCFI
https://github.com/llvm/llvm-project
https://github.com/mcfi/MCFI
https://github.com/mcfi/MCFI
https://github.com/dennisaa/patharmor
https://github.com/uCFI-GATech/ucfi-compiler
https://source.android.com/docs/core/architecture/kernel/gki-android14-6_1-release-builds
https://github.com/bytecodealliance/wasmtime
https://github.com/cxreet/razor
https://github.com/vahldiek/erim
https://github.com/IAIK/Donky
https://github.com/s3team/uroboros
https://github.com/angr/patcherex
https://github.com/utds3lab/multiverse
https://github.com/columbia/egalito
https://github.com/HexHive/retrowrite
https://github.com/GJDuck/e9patch
https://github.com/GrammaTech/ddisasm
https://github.com/HexHive/retrowrite
http://seclab.cs.sunysb.edu/seclab/safer/

source compiler assembler object

other
objects

linker binary

shared
libraries

kernel process

.section .note.GNU-stack,"",@progbits .note.GNU-stack PT_GNU_STACK

loader

hello_world.c gcc/clang ashello_world.s hello_world.o ld hello_world

libc.so.6 ld-linux-x86-64.so.2crti.o

compilation linking loadingassembling

assembly

......

Fig. 3: Overview of program lifetime. The source code is first compiled into an assembly code, which is then assembled to an object file.
The object file is linked with other objects to generate a binary, which is finally loaded into the process with shared libraries.

developers have fixed this issue based on our report. Although
Donky provides similar isolations, BADASS has a limited
security impact on it. This is because Donky will create a
separated non-executable stack for each isolated domain, while
the default stack which is executable due to BADASS will not
be used by any code. Thanks to the isolation, code in other
domains cannot jump to the default executable stack.

All five binary rewriters, including Uroboros, Ramblr,
RetroWrite, Ddisasm and ARMore are reassembleable dis-
assemblers, or reassemblers for short. A reassembler first disas-
sembles the binary code into valid assembly files. After optional
instrumentation, like adding memory-safety checks, it will
assemble the assembly file back into binaries. Unlike previous
IRMs which enforce specific security properties, binary rewriter
is a general platform to help insert various security properties
to binaries. Therefore, the security implication of BADASS also
varies. For example, RetroWrite is mainly designed for fuzzing-
oriented instrumentation and sanitization, where attackers have
no chance to reach the modified binary. However, we still
suggest fixing this issue to eliminate any opportunity that
weakens the application security. These tools could be used
for security purposes in the future, like how Uroboros and
Ramblr are adopted in DARPA CGC [35]. Ddisasm developers
fixed this issue in November 2022, long before we started our
investigation. Developers of RetroWrite and ARMore have fixed
BADASS based on our reports, and Ramblr developers have
committed to fixing it in the near future. Uroboros developers
are still investigating the problem.

Takeaway: Even experienced security researchers and
recognized developers may miss the section-definition
directive for W⊕X when developing security-hardening
tools. Applications protected by these security tools will
have unexpected executable stacks, which downgrade the
program security to a certain extent. We cannot simply
attribute all BADASS problems to the unawareness of
security features among general developers.

V. ANALYZING W⊕X ENFORCEMENT

We proceed to check our second conjecture - the obscure
assembly directive is too subtle to catch and the W⊕X
enforcement is complex and hard to follow. To achieve our
goal, we conduct an in-depth analysis to comprehensively
understand how W⊕X is enforced on Linux. Our analysis
follows the program lifetime shown in Figure 3, spanning the

$ cat nested-func.c
int wrapper(int (*f)(int)) { return f(3); }
int f() {
 int i = 2;
 int g(int j) { return i + j; }
 return wrapper(g);
}
$ gcc nested-func.c -S
$ grep GNU-stack nested-func.s
 .section .note.GNU-stack,"x",@progbits

Fig. 4: Nested functions leading to executable stack. GCC will
create an executable .note.GNU-stack section in the assembly.

source code of the GNU compiler (§V-A), assembler (§V-B),
linker (§V-C), Linux kernel (§V-D) and loader (§V-E). We aim
to reveal various assumptions and dependencies among multiple
components to enforce a non-executable stack (§V-F). To avoid
BADASS, we must ensure all assumptions and dependencies are
satisfied during the program compilation and process creation.
Along with the analysis, we will discuss how investigated IRMs
introduce executable stacks to protected applications.

A. Compilation

Compilation is the process that translates the program
from source code to assembly. During compilation, the GNU
compiler GCC will always insert the section-definition direc-
tive .section .note.GNU-stack,"flags",@progbits into the
assembly. This directive defines a .note.GNU-stack section to
indicate whether the stack should be executable. The default
value of flags is an empty string, and the stack will be non-
executable. But in rare cases, the source code may define a
special nested function (i.e., defining a new function within
another) that accesses local variables of the enclosing function
and its address is explicitly taken [43]. For programs with
such special nested functions, GCC will generate specialized
binaries with executable stacks. These binaries will dynamically
insert specific trampoline code onto the stack during runtime,
and execute these code to prepare arguments for the nested
functions [44]. In this case, GCC will set flags to "x" to
indicate that the stack has to be executable.

Figure 4 shows an example where special nested functions
lead to an executable stack, inspired by the blog [84]. Function
g is defined within function f. It accesses the local variable
i of f, and its function address is taken and passed as an
argument to function wrapper. After we compile nested-func.c
with GCC to assembly, we can find "x" is used in the flags
of section .note.GNU-stack. Once nested-func.c is compiled

7

TABLE II: Compilation result. GCC always emits the directive for
.note.GNU-stack, and sets the flags based on nested functions.

IN: one source code OUT: one assembly code

define any nested function that
• accesses local variables of the enclosing function
• has function address explicitly taken

↪→ .section .note.GNU-stack,"x",@progbits

otherwise ↪→ .section .note.GNU-stack,"",@progbits

1 void file_end_indicate_exec_stack(void) {
2 unsigned int flags = SECTION_DEBUG;
3 if (trampolines_created) // 1 when creating trampoline
4 flags |= SECTION_CODE;
5 switch_to_section(get_section(".note.GNU-stack",flags,0)); }

into an application, the process will have an executable stack,
as shown in Figure 1. The bottom of Table II shows the related
GCC code. It creates .note.GNU-stack and sets flags based
on variable trampolines_created. GCC sets this variable to
true once it creates any trampoline code for special nested
functions. We summarize the behavior of GCC in Table II.

Nested function is not supported in standard C and C++, and
is merely an extension to GNU C (even not allowed in GNU
C++). Although such functions were ever used in particular
applications before, such as grub [8], link-grammar [26] and
mountall [27], developers have rewritten their applications to
eliminate nested functions. GCC supports this feature merely
for compatibility purposes, while other compilers do not support
it. For example, CLANG does not allow nested functions
and always uses empty flags in the directive to create non-
executable .note.GNU-stack sections. None of our investigated
security tools in §IV adopt nested functions. In summary, as
long as we compile an application from the source code, the
emitted assembly files will always contain the section-definition
directive, which in most cases indicates non-executable stacks.

B. Assembling

GNU assembler AS maps every assembly instruction to
machine code, and creates code and data sections based on var-
ious directives. Developers can provide command-line options
--execstack and --noexecstack to force AS to generate the
.note.GNU-stack section and set proper executable permission
(lines 2-7 and 15-18 of the code in Table III). However, if
the developers do not provide such options, AS checks the
assembly file for creating required sections. If the assembly file
contains the .section .note.GNU-stack,"flags",@progbits
directive, AS will create an empty .note.GNU-stack section
(lines 9 and 12). If flags is "x", AS will set the SEC_CODE flag
in the section header (lines 11 and 13), indicating the stack
should be executable. Otherwise, the header has no special
flags. However, if the assembly file does not have any directive
for .note.GNU-stack and the developers also do not specify
any option, the assembler will not create this section in the ELF
object file. Similarly, another popular assembler, NASM, checks
the NASM syntax assmebly file for an equivalent assembly di-
rective section .note.GNU-stack noalloc noexec nowrite
progbits and handles .note.GNU-stack just like AS. We

TABLE III: Assembling result. AS will translate assembly files to
machine code verbatim, and create .note.GNU-stack accordingly.

IN: one assembly code OUT: one object code

.section .note.GNU-stack,"x",@progbits | --execstack
↪→ .note.GNU-stack w/ SEC_CODE

.section .note.GNU-stack,"",@progbits | --noexecstack
↪→ .note.GNU-stack w/o SEC_CODE

directive missing ↪→ .note.GNU-stack missing

1 // 1. ---- Parse command-line arguments ------------------
2 int optc = getopt_long_only(...);
3 if (optc == OPTION_EXECSTACK) {
4 flag_execstack = 1; flag_noexecstack = 0;
5 } else if (optc == OPTION_NOEXECSTACK) {
6 flag_execstack = 0; flag_noexecstack = 1;
7 }
8 // 2. ---- Create sections based on directives -----------
9 char *name = obj_elf_section_name(); // .note.GNU-stack

10 bfd_vma attr = obj_elf_parse_section_letters(...); // "x"
11 flagword flags = ((attr & SHF_EXECINSTR) ? SEC_CODE : 0);
12 segT sec = subseg_force_new (name, 0);
13 bfd_set_section_flags (sec, flags);
14 // 3. ---- Create/Update based on command-line arguments -
15 if ((flag_execstack || flag_noexecstack) && ...) {
16 segT gnustack = subseg_new (".note.GNU-stack", 0);
17 bfd_set_section_flags (gnustack,
18 SEC_READONLY | (flag_execstack ? SEC_CODE : 0)); }

summarize three different settings of the .note.GNU-stack
section in an ELF object file in Table III.

Based on the discussion in §V-A, if the assembly file is
produced by a compiler, like GCC or CLANG, it must contain
a directive for .note.GNU-stack. In that case, the assembler
will always create the .note.GNU-stack section. However,
not all code is written in high-level languages and follows
the complete compilation chain in Figure 3. Hand-written
assembly files intervene in the compilation process and the
W⊕X enforcement path from the middle. As a consequence,
they are not processed by the compiler and may not have
this directive. Our investigation in §IV-C reveals that all 11
affected IRMs contain at least one assembly file missing the
obscure directive. The assembly code may come from hand-
written assembly files (e.g., ERIM), empty assembly files
generated from building scripts (e.g., MCFI), or assembly
files disassembled from binary (e.g., RetroWrite). Following
the last case in Table III, with these assembly files, AS will
create object files without .note.GNU-stack sections.

C. Linking

GNU linker LD combines all object files and produces
ELF binaries, including executables (e.g., hello_world) and
shared libraries (e.g., libc.so). During linking, LD drops all
.note.GNU-stack sections in ELF object files and creates a
PT_GNU_STACK segment header to indicate whether the stack
should be executable. Table IV summarizes the related code
for this task. First, LD supports two command-line options
-z execstack and -z noexecstack for developers to explicitly
specify the stack permission. Once developers use such options,
LD will create a PT_GNU_STACK segment and set the expected
permission. Lines 2-8, 10-13 and 32-35 show the logic. If
developers specify multiple -z options, the last one will
overwrite all previous settings. At lines 11 and 13, LD will
change elf_stack_flags from the value 0 to readable (PF_R),

8

TABLE IV: Linking result. Based on whether object files contain
.note.GNU-stack sections and whether such section has "x" flag, LD
will create the PT_GNU_STACK segment and set executable permission.

IN: multiple object files OUT: one executable
.note.GNU-stack SEC_CODE PT_GNU_STACK PF_X

all have
1 any created yes
2 none created no

all miss 3 - missing -

some have,
others miss

1 any created yes

4 none created
yes (x86/x64/arm)

no (aarch64)

1 //----- 1. Parse command-line arguments: -z optarg ----------
2 if (strcmp(optarg, "execstack") == 0) {
3 link_info.execstack = true;
4 link_info.noexecstack = false;
5 } else if (strcmp(optarg, "noexecstack") == 0) {
6 link_info.noexecstack = true;
7 link_info.execstack = false;
8 }
9 //----- 2. Set elf_stack_flags ------------------------------

10 if (info->execstack) // info = &link_info;
11 elf_stack_flags = PF_R | PF_W | PF_X;
12 else if (info->noexecstack)
13 elf_stack_flags = PF_R | PF_W;
14 else {
15 asection *notesec = NULL, *s = NULL; int exec = 0;
16 // Traverse every object file
17 for (obj = info->input_bfds; obj; obj = obj->link.next) {
18 s = bfd_get_section_by_name(obj, ".note.GNU-stack");
19 if (s) { // has .note.GNU-stack
20 notesec = s;
21 if (s->flags & SEC_CODE) { // "x" in flags
22 exec = PF_X; break;
23 } }
24 else if (bed->default_execstack &&
25 info->default_execstack)
26 exec = PF_X; // no .note.GNU-stack
27 } // end of object-file traversal
28 if (notesec || info->stacksize > 0)
29 elf_stack_flags = PF_R | PF_W | exec;
30 }
31 //----- 3. Create PT_GNU_STACK segment ----------------------
32 if (elf_stack_flags) {
33 m = bfd_zalloc (abfd, ...);
34 m->p_type = PT_GNU_STACK;
35 m->p_flags = elf_stack_flags; }

writable (PF_W) and if necessary, executable (PF_X). As long as
elf_stack_flags is not 0, lines 32-35 will create the segment
with the proper type and permission.

However, not all developers specify stack permissions in link-
ing flags. In this case, LD will leverage the .note.GNU-stack
section in every object file to determine the stack permission.
At line 15, it allocates notesec to record whether any object
file has a .note.GNU-stack and uses exec to accumulate the
stack permission. Lines from 17 to 27 form a loop to check
all provided object files one by one. For every object file,
LD searches for .note.GNU-stack from section headers. 1
If it can find this section, LD records the search result in
notesec. Further, if this section in the current object file
requires executable permission, the code records it in exec
and exits the loop immediately. Following the early exit, since
notesec is not NULL, LD will update elf_stack_flags at line
29 (exec is PF_X), and create the PT_GNU_STACK segment as
executable. 2 If all object files have .note.GNU-stack sections
but none of them are required to be executable, exec will be
always 0 and LD will create a non-executable PT_GNU_STACK

TABLE V: Kernel loading result and related code, after merging
the rules of READ_IMPLIES_EXEC (details provided in Table VI).

IN: one binary OUT: one process

PT_GNU_STACK
arm kernel kernel >= v5.8-rc1
< v6 < v5.8-rc1 x86/>=armv6 x64/aarch64

PF_R|PF_W exec-all no no no
PF_R|PF_W|PF_X exec-all exec-all exec-stack exec-stack
segment missing exec-all exec-all exec-all no

1 //---- 1. Check the PT_GNU_STACK of the main binary ---------
2 int executable_stack = EXSTACK_DEFAULT;
3 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
4 if (elf_ppnt->p_type == PT_GNU_STACK) {
5 if (elf_ppnt->p_flags & PF_X)
6 executable_stack = EXSTACK_ENABLE_X;
7 else
8 executable_stack = EXSTACK_DISABLE_X; }
9 //---- 2. Set the memory permission -------------------------

10 #define TASK_EXEC \
11 ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
12 #define VM_STACK_FLAGS (... | TASK_EXEC) // expanded
13 unsigned long vm_flags = VM_STACK_FLAGS;
14 if (executable_stack == EXSTACK_ENABLE_X)
15 vm_flags |= VM_EXEC;
16 else if (executable_stack == EXSTACK_DISABLE_X)
17 vm_flags &= ~VM_EXEC;
18 mprotect_fixup(..., vm_flags);

through line 29 and lines 32-35. 3 If all object files have
no .note.GNU-stack section, notesec will be always NULL
and elf_stack_flags will not be updated at line 29. In that
case, LD will not create any PT_GNU_STACK segment. 4 When
only some object files have .note.GNU-stack sections but
none of them has SEC_CODE, notesec will not be NULL and a
PT_GNU_STACK segment will be created. Its execution permission
depends on exec, which could be set to PF_X at line 26, based
on default_execstack members of the backend data bed and
the linker data info. Data bed is defined in an architecture-
dependent macro elf_backend_default_execstack. In the
latest version of LD, some architectures set it to false, like
aarch64 and ia64, while others adopt the default value true,
like x86, x64 and arm. Data info is configurable before we
build the linker LD and its current default value is true.

We summarize the LD behavior on PT_GNU_STACK segment
creation in Table IV. GOLD, a faster GNU linker, has a very
similar behavior as LD. However, the LLVM linker LLD is
different as its developers believe executable stack should
be fully prohibited nowadays. If .note.GNU-stack does not
exist, LLD will create this section without the executable flag.
If .note.GNU-stack exists and has the executable flag, LLD
will simply drop the flag. Using the command-line option -z
execstack is the only way to enable executable stack with
LLD. However, CLANG still uses LD as the default linker and
LLD will only be used with an extra option -fuse-ld=lld.

All 11 affected IRM implementations work on x86, x64 or
arm architectures. The assembler produces at least one object
file without the .note.GNU-stack section, while all other object
files have this section without the SEC_CODE flag. This situation
falls into category 4 in Table IV, where LD will create the
PT_GNU_STACK segment with PF_X in the final binary.

9

TABLE VI: Kernel logic for READ_IMPLIES_EXEC, based on the
PT_GNU_STACK, the Linux kernel version and the CPU architecture.

PT_GNU_STACK
arm Kernel Kernel >= v5.8-rc1
< v6 < v5.8-rc1 x86/>= armv6 x64/aarch64

PF_R|PF_W yes no no no
PF_R|PF_W|PF_X yes yes no no
segment missing yes yes yes no

1 // Before Kernel v5.8-rc1 (all)
2 #define elf_read_implies_exec(ex, executable_stack) \
3 (executable_stack != EXSTACK_DISABLE_X)
4

5 // After Kernel v5.8-rc1 (x86/x64)
6 #define elf_read_implies_exec(ex, executable_stack) \
7 (mmap_is_ia32() && executable_stack == EXSTACK_DEFAULT)
8 // After Kernel v5.8-rc1 (arm)
9 int arm_elf_read_implies_exec(int executable_stack) {

10 return (executable_stack == EXSTACK_DEFAULT ||
11 cpu_architecture() < CPU_ARCH_ARMv6); }
12 // After Kernel v5.8-rc1 (aarch64)
13 #define compat_elf_read_implies_exec(ex, stk) \
14 (stk == EXSTACK_DEFAULT)

D. Main Binary Loading
When we create a new process on Linux, it takes two steps

to load the main binary and dependent shared libraries into the
process memory space. Both steps may change the permission
of the stack and other regions based on different attributes.

In the first step, the Linux kernel will load the code and
data sections of the main binary into memory. If the ELF
binary specifies an interpreter in the PT_INTERP segment,
like /lib64/ld-linux-x86-64.so.2, the kernel will also load the
interpreter into the memory. However, the kernel only checks
the PT_GNU_STACK segment of the main binary to determine
the executable permission of the stack. The interpreter’s
PT_GNU_STACK segment is ignored. Table V shows the kernel
code for setting the stack permission for a new process. If the
main binary contains the PT_GNU_STACK segment (line 4), the
variable executable_stack will be updated accordingly at line
6 or line 8. When it comes to line 14 or line 16, the kernel will
add or remove the VM_EXEC flag and invoke mprotect_fixup
to set the page permission. However, when the main binary
does not have a PT_GNU_STACK segment, executable_stack
will have the default value, and the kernel will assign the
VM_STACK_FLAGS, a complicated macro, to the stack. When we
expand the macro VM_STACK_FLAGS, it will include VM_EXEC if
the current process personality covers READ_IMPLIES_EXEC.
READ_IMPLIES_EXEC. BADASS will have the most significant
impact on application security if it triggers READ_IMPLIES_EXEC,
where all readable memory regions are set to executable,
including but not limited to stack, heap, .bss and .data sections.
This feature is designed to support special binaries compiled for
old CPUs that lack NX bit, where any readable memory is as-
sumed to be executable. Linux kernel determines to enable this
devastating feature based on the availability of PT_GNU_STACK,
the kernel version, and the CPU architecture. We analyze the
related code in the Linux kernel, and summarize the results
in Table VI. For any arm CPU older than ARMv6, the Linux
kernel will always enable READ_IMPLIES_EXEC since these pro-
cessors do not support NX bit. Besides, on Linux kernels before
v5.8-rc1 (released on June 14, 2020), READ_IMPLIES_EXEC is

TABLE VII: Dynamic library loading results and related code.

Main binary Any shared library (PT_GNU_STACK)
PT_GNU_STACK PF_R|PF_W PF_R|PF_W|PF_X segment missing

PF_R|PF_W - EXEC EXEC (x86/x64/arm)
PF_R|PF_W|PF_X - - -
segment missing - EXEC (aarch64) -

1 //---- 1. Set dl_stack_flags based on main binary ----------
2 dl_stack_flags = DEFAULT_STACK_PERMS;
3 // PF_R|PF_W for aarch64
4 // PF_R|PF_W|PF_X for x86/x64/arm
5 for (ElfW(Phdr) *ph = phdr; ph < &phdr[phnum]; ++ph)
6 if (ph->p_type == PT_GNU_STACK) {
7 dl_stack_flags = ph->p_flags;
8 break; }
9

10 //---- 2. Repeat for EVERY dynamically loaded library -------
11 unsigned int stack_flags = DEFAULT_STACK_PERMS;
12 for (ph = phdr; ph < &phdr[l->l_phnum]; ++ph)
13 if (ph->p_type == PT_GNU_STACK) {
14 stack_flags = ph->p_flags;
15 break; }
16 if ((stack_flags & ~dl_stack_flags) & PF_X)
17 __stack_prot |= PROT_READ|PROT_WRITE|PROT_EXEC;
18 if (mprotect (page, dl_pagesize, __stack_prot) == 0)
19 dl_stack_flags |= PF_X;

enabled if the main executable does not have a PT_GNU_STACK
segment or its PT_GNU_STACK segment has the PF_X flag. From
kernel v5.8-rc1, only if PT_GNU_STACK is missing and the
program runs on a 32-bit architecture, READ_IMPLIES_EXEC will
be enabled. READ_IMPLIES_EXEC not only affects the binary and
interpreter loading at the process creation, but also impacts all
subsequent memory allocations through mprotect and mmap.

After merging the impact of READ_IMPLIES_EXEC, we sum-
marize the executable permission of process memory regions
in Table V. “exec-all” means all readable memory regions
are executable due to READ_IMPLIES_EXEC, while “exec-stack”
means that other than code sections, only the stack is executable
due to the PF_X flag in PT_GNU_STACK. “exec-all” is the final
result after merging “exec-all” and “exec-stack”.

Eight out of 11 affected IRM implementations, including
MCFI, RockJIT, πCFI and all five reassemblers, will set the
PF_X flag of the PT_GNU_STACK segment in the main binary of
hardened programs. When executing these hardened programs,
once the main binary is loaded, the in-memory stack is set
to be executable. The remaining three IRMs set PF_X in
PT_GNU_STACK of shared libraries, and do not have an in-
memory executable stack (yet) after loading the main binary.

E. Shared Library Loading

After loading the binary and the interpreter, the Linux
kernel will transfer the control to the user-space interpreter,
which recursively loads all shared libraries required by the
main binary. For ELF binaries, the default interpreter is
/lib64/ld-linux-x86-64.so.2, commonly called “loader”.
Table VII shows how the loader manipulates stack permission
based on each shared library. It first sets a global flag
dl_stack_flags to the architecture-dependent default value
(line 2), which includes PF_X for x86, x64 and arm, but
only contains PF_R and PF_W for aarch64. Then, the loader
checks the PT_GNU_STACK segment of the main binary to
update dl_stack_flags (line 7). After the initialization, the

10

!① && !②

--noexecstack

compilation
assembly

”flags"

define
special
nested
functions

“”

“x”

miss

object

.note.GNU-stack

assembling

SEC_
CODE

miss

binary
aa

rch
64

linking

PT_GNU_STACK

PF_X

miss

main binary loading
process

①

①

!① && ②

x86/arm

RW

RWX

RIE

PF_X

miss

RWX

process
library loading

RW

RIE

--execstack

-z noexecstack

-z execstack

x86/x64/arm

otherwise

①

otherwise

!①
 && ②

x6
4/

aa
rc

h6
4

Notes:
① arm && < armv6
② kernel < v5.8-rc1

source

PT_GNU_STACK

any

any

✚

✚

✚

✚

✚

Non-executable
stack

Executable
stack

All readable pages
are executable

Fig. 5: Compilation details related to BADASS. The top workflow shows the normal compilation behavior that produces non-executable
stacks. Red lines indicate possible root causes that introduce executable stacks or make all readable memory regions executable.

loader processes shared libraries one by one. For every library,
the loader parses the flags in PT_GNU_STACK and sets the
stack_flags. If PT_GNU_STACK is missing, stack_flags is
set to the default value (line 11). If stack_flags has PF_X
while dl_stack_flags does not have it, the loader believes an
executable stack is required for the current shared library. It will
set __stack_prot to PROT_READ|PROT_WRITE|PROT_EXEC (line
17) and invoke mprotect to make the stack executable. After the
successful mprotect, the loader saves PF_X to dl_stack_flags
and the code at line 16 will be false. In this way, the loader will
not further alter the stack permission for subsequent libraries
and the process stack will always be executable.

We summarize the behavior of the loader regarding exe-
cutable stacks in Table VII, where “-” means no changes
and “EXEC” indicates a mprotect syscall will make the stack
executable. In general, the loader assumes the kernel has set up
the stack permission based on the PT_GNU_STACK segment of
the main binary (the purpose of dl_stack_flags). It examines
all shared libraries and makes the stack executable as long
as any library requires so. The PT_GNU_STACK segment of the
loader is ignored by default. The only exception is that the
user explicitly employs the loader to run the binary, like
/lib64/ld-linux-x86-64.so.2 ./hello_world. In this case,
the loader serves as the main binary and hello_world is treated
as one library. Rules in Table V and Table VII will be applied.

In our investigation, PathArmor, ERIM and Donky are the
three IRMs that set flag PF_X to segment PT_GNU_STACK in
shared libraries instead of the main binary. All these shared
libraries work as security runtime to protect the application.
However, when these shared libraries are loaded, the loader will
call mprotect to change the stack permission to executable.

F. Putting Everything Together

Based on the analysis of the compilation and binary-loading
toolchain on Linux, we summarize the complicated logic related
to stack executable permission in Figure 5. The first row shows
the normal compilation workflow where no BADASS exists.
Red lines demonstrate the potential locations where developers
may miss necessary attributes and introduce executable stacks.

Although every component has a dedicated (and working)
design to support W⊕X, each of them relies on the output of
the previous tool to produce proper settings. We did not find
any defect from the implementation. However, they form a
long chain of trust and dependency to produce non-executable
stacks. As long as one input does not follow the assumption,
like one component fails to work or the file is not produced
by the previous tool, the dependency chain will break and we
may get a program with an executable stack. Assembly code
is the most common reason to break W⊕X since developers
occasionally write assembly files for various reasons such
as security and performance. Due to the subtle design in
assembling, it is easy for developers to miss the essential
section and introduce executable stacks. We should notify
developers about the unexpected security downgrades.

Takeaway: The W⊕X enforcement on Linux requires
concerted and sophisticated collaborations of multiple
compilation and execution tools, including the Linux
kernel, which is complex and hard to follow. Hand-written
assembly files join the compilation process in the middle,
and break the regular W⊕X enforcement routine. The
subtlety of the .note.GNU-stack section causes most
developers to miss it in hand-written assembly files, which
is the main root cause of executable stacks.

11

VI. PROBLEM GENERALIZATION

The unexpected investigation result of BADASS in §IV mo-
tivates us to check other practical in-use security mechanisms
similar to W⊕X, to understand whether they are also mistakenly
disabled by experienced security developers. We select five
widely adopted security mechanisms, specifically, PIE, RELRO,
stack canary [32], FORTIFY_SOURCE [50] and Intel CET [69].
We adopt the same methodology as in §IV-B to check all IRMs
in Table I. We get two new findings, where three CFI solutions
mute FORTIFY_SOURCE and 11 IRMs disable Intel CET.
Disabling FORTIFY_SOURCE. FORTIFY_SOURCE pro-
vides a lightweight method to detect buffer overflow vulnerabil-
ities related to common string copy or memory copy functions,
like memcpy and strcpy [50]. With FORTIFY_SOURCE,
compilers such as GCC will replace unsafe copy functions
with corresponding safe wrappers, like replacing strcpy with
strcpy_chk. The latter will check the buffer size during the
compilation or at runtime, and terminate the execution once
the destination buffer cannot store all data from the source.
FORTIFY_SOURCE is enabled as long as the compilation
configuration specifies any non-zero optimization level. Our
investigation shows that three CFI solutions, specifically,
MCFI/RockJIT/πCFI, will disable FORTIFY_SOURCE in the
hardened program, leading to reduced capability to detect
buffer overflow bugs. The root cause is that they wrap original
indirect function calls to sensitive library functions with an
inserted runtime function __patch_call. This replacement
prevents compilers like GCC from detecting invocations
of predefined memory-copy and string-copy functions, and
therefore, compilers cannot replace them with secure wrappers.
To address this issue, these CFI implementations can first
replace insecure functions with secure wrappers, and then
conduct CFI-related code transformations.
Suppressing Intel CET. Another finding is related to Intel
CET [69], a hardware-assisted CFI solution proposed by
Intel in 2017. Intel CET consists of two features, indirect
branch tracking (IBT) for forward-edge CFI and shadow stack
(SHSTK) for backward-edge CFI. Similar to W⊕X, enforcing
Intel CET on Linux requires support from multiple parties,
including the CPU, the compilation toolchain, and the Linux
kernel. Intel activated the hardware support for Intel CET in the
11th generation Tiger Lake CPU, released in October 2020. IBT
has been supported by the Linux kernel since v5.18 (released
in May 2022) and enabled by default after v6.2 (released in
February 2023). The support for SHSTK in kernel came a
little bit late but finally got merged into v6.6 (released in
October 2023). Similar to the enforcement of W⊕X, the GNU
compilation toolchain requires a section-definition directive
.section .note.gnu.property,"a" in the assembly file to
generate an Intel CET-protected binary. With this directive, the
assembler will create the .note.gnu.property section and set
up two entries called GNU_PROPERTY_X86_FEATURE_1_IBT and
GNU_PROPERTY_X86_FEATURE_1_SHSTK. The two entries indicate
whether all executable sections are compatible with IBT and
SHSTK. Missing these two entries will disable the protections

of Intel CET on the program. We identify that all 11 IRMs
suffering from BADASS also disable Intel CET since they
miss the necessary .note.gnu.property section in assembly
files. For PathArmor, ERIM, and Donky, the hand-written
assembly files are compiled and linked into shared libraries.
When loading these shared libraries to a CET-enabled process,
the loader will check their CET marker and raise an error to
stop the execution. For the other eight IRMs, the absence of
the CET marker occurs in the main binary, which makes Intel
CET silently disabled. Ddisasm patched this issue together
with the BADASS problem in version 1.5.5.

During the investigation of Intel CET, we identify another
two entries in .note.gnu.property related to program function-
ality and security. Since 11 IRMs miss this section, the hardened
applications may have functionality or security issues. The first
entry is GNU_PROPERTY_STACK_SIZE, which stores the maximum
stack size allowed for the program. Developers can set the
stack size via the linker option -z,stacksize, or assembly
code. Missing this property may render the process exhaust
the stack space and trigger stack overflow at runtime. The
second entry GNU_PROPERTY_NO_COPY indicates to disable copy
relocation on protected data symbols. Without this property,
when the program code accesses an external variable defined in
a shared library, the linker will copy the data from the library to
a writable location of current binary. If the original data is read-
only, copy relocation will make it writable, which may lead to
severe attacks [45]. When a relocatable object sets this property,
the linker will treat protected data symbols as defined locally
and prevent copying the data to other executables. Developers
can set this property via definitions in assembly files.

VII. DISCUSSION

In this section, we first discuss the potential attacks towards
introducing executable stacks. Next, we summarize existing
efforts for mitigating BADASS and provide our suggestions to
avoid it. Then, we briefly discuss the differences between our
work and previous related posts. We also explain the W⊕X
enforcement on Windows and macOS. Finally, we will discuss
another recent security issue related to the .note section.

A. Malicious Attacks via BADASS

During the IRM investigation, we identify that all BADASS
issues are introduced due to developers’ benign mistakes —
missing the .note.GNU-stack definition directive in assembly
files. However, malicious attackers may abuse BADASS to
deliberately introduce executable stacks to applications such as
open-source software. Although an executable stack is not a
complete attack, it could be a stealthy way to accomplish one
critical part of exploiting prevalent memory-safety bugs [83].
Once attackers find any exploitable bug, they can easily build
exploits through code injection instead of ROP or ret2libc.

Although this kind of attack may seem to be implausible,
the recent notable xz backdoor has demonstrated the feasibility
and practicality of these stealthy attacks [51]. In that event,
the malicious attacker first gained the trust of the developers
of the xz, and later became a maintainer. After that, he/she

12

modified the compilation script file to inject malicious content
into the application binary. The modification is minimal and
stealthy, allowing the malicious behavior to be accepted into
widely used applications and systems such as Fedora OS. In
another backdoor instance, the attacker inserted an erroneous “.”
symbol into the compilation script to turn off Linux Landlock
sandboxing [47]. Code reviewers overlooked this minor change
and thus merged the commit into the online repository. These
accidents show that malicious attackers like to take multiple
minor steps to achieve advanced persistent threat (APT) attacks.
We should take action before attackers abuse BADASS to
compromise real-world systems.

The intricate enforcement of W⊕X exposes multiple surfaces
for attackers to introduce executable stacks. First, they can
implement a desired feature through a special nested function
or replace an existing function with a nested version. When the
modified program is compiled by GCC, the process will have
an executable stack. This method is more stealthy than directly
uploading malicious code, since the nested functions have
merely benign functionalities and thus can pass most manual
code reviews and automatic scanning [2], [52]. Second, they
have multiple methods to introduce an executable stack through
assembly files. They can add a new assembly file that has
an executable .note.GNU-stack or has no .note.GNU-stack
directive, where the latter is likely preferred. If the source code
already contains some assembly files, attackers can remove
existing .note.GNU-stack directives or change the flags of
.note.GNU-stack to “x”. To make this attack stealthy, attackers
can either introduce minimal changes, like creating an empty
assembly file by adding one command in Makefile, or hide the
malicious modifications within a large chunk of code changes.
Third, they may even upload object files or shared libraries
with BADASS issues. Although directly uploading these files is
uncommon and easily detected, attackers may take the stealthy
method used in creating the xz backdoor. In particular, they can
hide such object files or shared libraries within a binary-format
test file, and then modify the compilation script to extract these
files and merge them into the final binary.

Due to ethical considerations, we never test these new attack
vectors against real-world code repositories. However, based
on our observation and investigation of executable stacks in
popular applications, we believe it is trivial for attackers to
inject these BADASS-enabling files into open-source software.

B. Mitigations of BADASS

During our analysis of the W⊕X enforcement on Linux,
we notice that continuous efforts have been made to mitigate
the BADASS issue. First of all, several researchers are also
concerned about this issue and have spent significant efforts
to mitigate it. For example, Kees Cook and Jamie Strandboge
have conducted a broader investigation on programs with
executable stacks and reported their findings to corresponding
developers [82]. Second, developers of compilation tools
and Linux kernel are providing more convenient options
and implementing more comprehensive checks. 1 In 2010,
GOLD implemented an option --warn-execstack to remind

the risk of executable stacks [31]. 2 LD, the most widely
used linker, adopted this design and set it as the default
option in 2022 [24]. During our investigation, we find many
developers notice this issue from the LD’s warnings. Although
they may not completely understand the issue, they fix the
problem to avoid warnings. 3 More than that, LD supports
extending this warning to all writable-and-executable segments
via --warn-rwx-segments. 4 Most recently, in November
2023, LD added two new options, --error-execstack and
--error-rwx-segments, for developers to convert any stack-
permission warnings into errors [25]. 5 Within the kernel,
READ_IMPLIES_EXEC is disabled after v5.8-rc1 even if segment
PT_GNU_STACK has flag PF_X [29]. 6 When loading the main
binary for a new process, the kernel will generate a warning
if the process has an executable stack.

Unfortunately, we can still find many cases of executable
stacks from even popular applications, even recently. To further
mitigate this issue, we propose the following suggestions to
application developers and software maintainers.
Application Developers. Developers have full control of the
source code and compilation configurations. They can take
various actions to enhance the application security. First, they
can avoid writing nested functions that enable executable stacks,
or rewrite existing ones to make stack non-executable. Second,
when the application has to use assembly code, they can adopt
inline assembly or always include a proper .note.GNU-stack
directive in every assembly file. Third, developers can adopt
specific compilation tools that produce more secure binaries,
like CLANG which drops support to nested functions and LLD
which generates non-executable stacks by default. Fourth, they
should specify compilation options to explicitly disable exe-
cutable stacks, like --noexecstack for AS and -z noexecstack
for LD. At last, when compilation tools or operating systems
produce warning messages regarding the application security,
developers should promptly fix them.
Security Researchers. Security researchers should pay special
attention to avoid BADASS issues. When implementing a new
security solution, they should examine the application security
after hardening, besides the performance and compatibility
measurement. Once the tool is released to the public, normal
users usually trust professional researchers and may adopt the
tool to protect their applications. Therefore, we should try our
best to avoid bringing new security risks to hardened programs.
Compilation Toolchain Developers. Developers of compi-
lation toolchains can assist software developers in improving
application security. First, they can change the default settings
of security-related options to secure values. For example,
based on our code analysis in §V, when particular directives
are missing, many macros and variables related to stack
permissions prefer executable stacks for compatibility purposes.
However, with rapid program development, only a few legacy
applications require an executable stack. CLANG even drops
the support to nested functions. Although updating settings may
introduce compatibility issues, it will immediately eliminate
many security issues. We have seen such changes in the Linux
kernel, where READ_IMPLIES_EXEC is disabled after v5.8-rc1

13

even if segment PT_GNU_STACK has flag PF_X [29]. Second,
considering that nested functions are no longer actively used
in modern systems, we suggest GNU toolchain developers
evaluate whether we can cancel the backward support to nested
functions. If the support is not necessary anymore, we can
redesign W⊕X with a simpler method, e.g., setting the stack to
non-executable at the end of compilation, like via the execstack
command. Another systematic mitigation could be allowing
the assembler to further scan the hand-written assembly files.
If neither the compiler nor the assembler finds any nested
function in source code and hand-written assembly files, the
assembler can set –noexecstack for every assembly file. In
this way, the W⊕X enforcement will not rely on assembly
directive while maintaining the compatibility.
Code Reviewers. Manual code reviewers and automatic
security-analysis tools should take the risk of BADASS into
consideration, and design specific rules to identify changes
that may enable executable stacks. These behaviors include
introducing special nested functions to source code, adding
assembly files without proper .note.GNU-stack directives,
changing compilation options, and committing object files
and shared libraries. They can design test cases to verify the
stack permission and reject suspicious uploads.

C. Related Discussions

BADASS is not completely unknown to the public. We search
online and find some related posts about BADASS. Ian Lance
Taylor [84] summarizes the W⊕X enforcement in the GNU
compilation toolchain without detailed code analysis. Chris
Wellons [92] focuses on explaining nested functions and briefly
introduces the W⊕X enforcement. Alejandro Hernandez [46]
discusses the READ_IMPLIES_ELF feature in detail. In this
paper, we conduct a systematic W⊕X enforcement analysis
by inspecting the source code of the compilation toolchain,
the kernel, and the loader. Additionally, we investigate the
root cause of recurring BADASS cases, provide mitigation
suggestions, and generalize the BADASS issue.

D. W⊕X on Other Operating Systems

We investigate the W⊕X enforcement on Windows and
macOS and find BADASS does not exist in these sys-
tems. For Windows, W⊕X (known as DEP) is enabled
by default without any special assembly directive. Dis-
abling DEP requires explicit assembly directives, where
the compiler inserts .def __enable_execute_stack and
call __enable_execute_stack to set part of the stack exe-
cutable when compiling a program with nested functions. For
macOS with Intel CPUs, executable stack is not related to any
assembly directive and can only be enabled with a non-default
linker option -allow_stack_execute. The linker will set a
program header flag ALLOW_STACK_EXECUTION in the Mach-O
executable, which is checked by the loader to set the stack
permission. For macOS on Apple Silicon, the executable stack
is completely disabled. This shows that Windows and macOS
adopt more secure strategies to enforce W⊕X.

E. Security Issue within .note Section

In this paper, we identify two .note sections highly
related to application security, i.e., .note.GNU-stack and
.note.gnu.property. It shows that developers are actively
using structured ELF note sections to store critical program
information. A recent security issue shows that storing sensitive
information in the general .note section is also risky [30].
Kernel Address Space Layout Randomization (KASLR) is an
effective address randomization technique for kernel space.
It was first introduced to the Linux kernel in 2013. Kernel
developers spent significant efforts to eliminate information
leakage via kernel-user channels since attackers can leverage
such information to bypass KASLR. Nowadays, inferring the
kernel location is believed to be difficult. However, a security
researcher recently noticed that kernel has stored the address
of function startup_xen in its .note section. This section
will be mapped to a user-space file called /sys/kernel/notes
and the file is world-readable. Attackers just read this file
to obtain a randomized address of startup_xen and then
completely bypass KASLR. More importantly, this problem
was introduced in 2007, long before KASLR was implemented.
This demonstrates that the subtle design of the .note section
may also lead to security downgrades. We should pay attention
to these sections to avoid security breaches.

VIII. CONCLUSION

In this paper, we investigate program-hardening tools and
inspect the source code of the compilation toolchain to
understand the challenge of properly enforcing W⊕X in Linux
systems. The result reveals that W⊕X on Linux relies on a long
chain of trust and dependency to safeguard the process stack.
It is challenging for developers, even security researchers, to
notice the subtle design and may introduce executable stacks
to popular and even hardened applications. To avoid similar
accidental security downgrades in the future, we need to revise
the design of W⊕X on Linux for simple and robust protection.

ACKNOWLEDGMENT

We thank the anonymous reviewers, especially our shepherd,
for their insightful comments and valuable feedback. We also
appreciate the assistance of the IRM developers for their de-
tailed discussions and prompt resolution of reported issues. This
research was supported by National Science Foundation (NSF)
under grants CNS-2247652 and CNS-2339848. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), Alexandria, VA, Nov. 2005, pp.
340–353.

[2] P. Avgustinov, O. De Moor, M. P. Jones, and M. Schäfer, “QL: Object-
Oriented Queries on Relational Data,” in Proceedings of the 30th
European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

14

[3] “Consider Marking the Stack Non-Executable in Assembly Files,”
https://github.com/ROCm-Developer-Tools/clr/issues/22, Oct. 2023.

[4] “Linking with FatBinary Files Disables Stack Execution Protection,”
https://github.com/llvm/llvm-project/issues/71711, Nov. 2023.

[5] “Warning: Missing .note.GNU-stack Section Implies Executable Stack,”
https://github.com/cms-sw/cmssw/issues/44609, Apr. 2024.

[6] “.note.GNU-stack,” https://news.ycombinator.com/item?id=11601725,
Apr. 2016.

[7] “Hardened/GNU Stack Quickstart,” https://wiki.gentoo.org/wiki/Harde
ned/GNU_stack_quickstart, May 2021.

[8] “Unbootable Grub2 on Gentoo with Lots of Compiler Warnings,” https:
//savannah.gnu.org/bugs/?25220, Dec. 2008.

[9] “Avoid Executable Stack,” https://github.com/ckolivas/lrzip/pull/243,
Apr. 2023.

[10] “Mattermost-desktop Utilizes an Executable Stack,” https://github.com
/mattermost/desktop/issues/797, May 2018.

[11] “Insecure Writable and Executable Stack,” https://github.com/mupen64p
lus/mupen64plus-core/issues/627, Feb. 2019.

[12] “Rocket.Chat Desktop App Uses an Executable Stack in Version 2.10.5,”
https://github.com/RocketChat/Rocket.Chat.Electron/issues/718, May

2018.
[13] “Build Results in Binary with Executable Stack,” https://github.com/ver

acrypt/VeraCrypt/issues/146, Mar. 2017.
[14] “VSCode for Linux Utilizes an Executable Stack,” https://github.com/m

icrosoft/vscode/issues/49793, May 2018.
[15] “Wire Desktop App Uses an Executable Stack in Version 3.0.2816,”

https://github.com/wireapp/wire-desktop/issues/1464, May 2018.
[16] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your Exploit

is Mine: Automatic Shellcode Transplant for Remote Exploits,” in
Proceedings of the 38th IEEE Symposium on Security and Privacy
(IEEE S&P), San Jose, CA, May 2017, pp. 824–839.

[17] Z. L. Basque, A. P. Bajaj, W. Gibbs, J. O’Kain, D. Miao, T. Bao,
A. Doupé, Y. Shoshitaishvili, and R. Wang, “Ahoy Sailr! There is No
Need to Dream of C: A Compiler-aware Structuring Algorithm for Binary
Decompilation,” in Proceedings of the 33rd USENIX Security Symposium
(USENIX Security), Philadelphia, PA, USA, Aug. 2024.

[18] E. Bauman, Z. Lin, K. W. Hamlen et al., “Superset Disassembly: Statically
Rewriting x86 Binaries without Heuristics,” in Proceedings of the 25th
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2018.

[19] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-Oriented
Programming: A New Class of Code-reuse Attack,” in Proceedings
of the 6th ACM ASIA Conference on Computer and Communications
Security (AsiaCCS), Hong Kong, China, Mar. 2011, pp. 30–40.

[20] P. Brady, “Libs Built with Executable Stack on Non AMD64 Architecture,”
https://github.com/facebook/zstd/issues/2963, Dec. 2021.

[21] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-Flow Integrity: Precision, Security, and Performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 16, 2017.

[22] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Security),
Washington, DC, Aug. 2015.

[23] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-Oriented Programming without Returns,” in Pro-
ceedings of the 17th ACM Conference on Computer and Communications
Security (CCS), Chicago, IL, Oct. 2009, pp. 559–572.

[24] N. Clifton, “Emit a Note Warning the User that Creating an Exe-
cutable Stack Because of Missing .note.GNU-stack Section is Dep-
recated,” https://github.com/bminor/binutils-gdb/commit/0d38576a34e
c64a1b4500c9277a8e9d0f07e6774, Apr. 2022.

[25] ——, “Add Ability to Change Linker Warning Messages into Errors
when Reporting Executable Stacks And/Or Executable Segments,”
https://github.com/bminor/binutils-gdb/commit/e922d1eaa3774a68c96e

ae01e0fd08f8a30cda8c, Nov. 2023.
[26] K. Cook, “Forces Executable Stack When Used by Applications,” https:

//bugs.launchpad.net/ubuntu/+source/link-grammar/+bug/409766, Aug.
2009.

[27] ——, “Mountall Has an Executable Stack,” https://bugs.launchpad.net/u
buntu/+source/mountall/+bug/434813, Sep. 2009.

[28] ——, “non-exec stack markings,” https://bugs.launchpad.net/ubuntu/+s
ource/zip/+bug/375121, May 2009.

[29] K. Cook and B. Petkov, “X86/ELF: Disable Automatic READ_IM-
PLIES_EXEC on 64-bit,” https://github.com/torvalds/linux/commit/9fcc
c5c0c99f238aa1b0460fccbdb30a887e7036, Apr. 2020.

[30] J. Corbet, “When ELF Notes Reveal Too Much,” https://lwn.net/Articl
es/962782/, Feb. 2024.

[31] C. Coutant, “Add Warnings for Executable,” https://github.com/bminor/bi
nutils-gdb/commit/83e17bd5ed3c2586f558202172bf9f52ac80650c, Dec.
2010.

[32] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,” in Proceedings of
the 7th USENIX Security Symposium (USENIX Security), San Antonio,
TX, Jan. 1998, pp. 63–78.

[33] E. Dandrea, “Electron Has an Executable Stack,” https://github.com/ele
ctron/electron/issues/11628, Jan. 2018.

[34] B. Darnell, “Security: Build with Non-Executable Stacks,” https://gith
ub.com/cockroachdb/cockroach/issues/37885, May 2019.

[35] DARPA, “Cyber Grand Challenge (CGC),” https://www.darpa.mil/prog
ram/cyber-grand-challenge, 2016.

[36] L. Di Bartolomeo, H. Moghaddas, and M. Payer, “ARMore: Pushing
Love Back into Binaries,” in Proceedings of the 32nd USENIX Security
Symposium (USENIX Security), Anaheim, CA, USA, Aug. 2023, pp.
6311–6328.

[37] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically
Instrumenting COTS Binaries for Fuzzing and Sanitization,” in Proceed-
ings of the 41st IEEE Symposium on Security and Privacy (IEEE S&P),
Virtually, May 2020, pp. 1497–1511.

[38] G. J. Duck, X. Gao, and A. Roychoudhury, “Binary Rewriting without
Control Flow Recovery,” in Proceedings of the 2020 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Virtual, Jun. 2020, pp. 151–163.

[39] U. Erlingsson, The Inlined Reference Monitor Approach to Security
Policy Enforcement. Cornell University, 2004.

[40] U. Erlingsson and F. B. Schneider, “IRM Enforcement of Java Stack
Inspection,” in Proceedings of the 21st IEEE Symposium on Security
and Privacy (IEEE S&P), Oakland, CA, May 2000.

[41] D. Evans and A. Twyman, “Flexible Policy-directed Code Safety,” in
Proceedings of the 20th IEEE Symposium on Security and Privacy (IEEE
S&P), Oakland, CA, May 1999.

[42] A. Flores-Montoya and E. Schulte, “Datalog Disassembly,” in Pro-
ceedings of the 29th USENIX Security Symposium (USENIX Security),
Virtually, Aug. 2020, pp. 1075–1092.

[43] GCC Online Manual, “Nested Functions,” https://gcc.gnu.org/onlinedo
cs/gcc/Nested-Functions.html.

[44] ——, “Support for Nested Functions,” https://gcc.gnu.org/onlinedocs/g
ccint/Trampolines.html.

[45] X. Ge, M. Payer, and T. Jaeger, “An Evil Copy: How the Loader Betrays
You,” in Proceedings of the 24th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb.–Mar. 2017.

[46] A. Hernandez, “A Short Tale About executable_stack in elf_read_im-
plies_exec() in the Linux Kernel,” https://ioactive.com/a-short-tale-abo
ut-executable_stack-in-elf_read_implies_exec-in-the-linux-kernel/, Nov.
2013.

[47] D. Hicks, “Xz: Can You Spot the Single Character That Disabled
Linux Landlock?” https://news.ycombinator.com/item?id=39874404,
Mar. 2024.

[48] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing Unique Code Target Property for Control-Flow
Integrity,” in Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS), Toronto, Canada, Oct. 2018, pp.
1470–1486.

[49] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-Control
Data Attacks,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy (IEEE S&P), San Jose, CA, May 2016, pp. 969–986.

[50] J. Jelinek, “Object Size Checking to Prevent (Some) Buffer Overflows,”
https://gcc.gnu.org/legacy-ml/gcc-patches/2004-09/msg02055.html, Sep.

2004.
[51] “CVE-2024-3094 XZ Backdoor: All You Need to Know,”

https://jfrog.com/blog/xz-backdoor-attack-cve-2024-3094-all-you
-need-to-know/#:~:text=TL%3BDR%20%E2%80%93%20the%20end
%20goal,executed%20before%20the%20authentication%20step%2C,
JFrog, Apr. 2024.

[52] W. Kang, B. Son, and K. Heo, “TRACER: Signature-Based Static
Analysis for Detecting Recurring Vulnerabilities,” in Proceedings of
the 29th ACM Conference on Computer and Communications Security
(CCS), Los Angeles, CA, USA, Nov. 2022, pp. 1695–1708.

15

https://github.com/ROCm-Developer-Tools/clr/issues/22
https://github.com/ROCm-Developer-Tools/clr/issues/22
https://github.com/llvm/llvm-project/issues/71711
https://github.com/llvm/llvm-project/issues/71711
https://github.com/cms-sw/cmssw/issues/44609
https://github.com/cms-sw/cmssw/issues/44609
https://news.ycombinator.com/item?id=11601725
https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
https://savannah.gnu.org/bugs/?25220
https://savannah.gnu.org/bugs/?25220
https://github.com/ckolivas/lrzip/pull/243
https://github.com/mattermost/desktop/issues/797
https://github.com/mattermost/desktop/issues/797
https://github.com/mupen64plus/mupen64plus-core/issues/627
https://github.com/mupen64plus/mupen64plus-core/issues/627
https://github.com/RocketChat/Rocket.Chat.Electron/issues/718
https://github.com/veracrypt/VeraCrypt/issues/146
https://github.com/veracrypt/VeraCrypt/issues/146
https://github.com/microsoft/vscode/issues/49793
https://github.com/microsoft/vscode/issues/49793
https://github.com/wireapp/wire-desktop/issues/1464
https://github.com/wireapp/wire-desktop/issues/1464
https://github.com/facebook/zstd/issues/2963
https://github.com/bminor/binutils-gdb/commit/0d38576a34ec64a1b4500c9277a8e9d0f07e6774
https://github.com/bminor/binutils-gdb/commit/0d38576a34ec64a1b4500c9277a8e9d0f07e6774
https://github.com/bminor/binutils-gdb/commit/e922d1eaa3774a68c96eae01e0fd08f8a30cda8c
https://github.com/bminor/binutils-gdb/commit/e922d1eaa3774a68c96eae01e0fd08f8a30cda8c
https://bugs.launchpad.net/ubuntu/+source/link-grammar/+bug/409766
https://bugs.launchpad.net/ubuntu/+source/link-grammar/+bug/409766
https://bugs.launchpad.net/ubuntu/+source/mountall/+bug/434813
https://bugs.launchpad.net/ubuntu/+source/mountall/+bug/434813
https://bugs.launchpad.net/ubuntu/+source/zip/+bug/375121
https://bugs.launchpad.net/ubuntu/+source/zip/+bug/375121
https://github.com/torvalds/linux/commit/9fccc5c0c99f238aa1b0460fccbdb30a887e7036
https://github.com/torvalds/linux/commit/9fccc5c0c99f238aa1b0460fccbdb30a887e7036
https://lwn.net/Articles/962782/
https://lwn.net/Articles/962782/
https://github.com/bminor/binutils-gdb/commit/83e17bd5ed3c2586f558202172bf9f52ac80650c
https://github.com/bminor/binutils-gdb/commit/83e17bd5ed3c2586f558202172bf9f52ac80650c
https://github.com/electron/electron/issues/11628
https://github.com/electron/electron/issues/11628
https://github.com/cockroachdb/cockroach/issues/37885
https://github.com/cockroachdb/cockroach/issues/37885
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html
https://gcc.gnu.org/onlinedocs/gccint/Trampolines.html
https://gcc.gnu.org/onlinedocs/gccint/Trampolines.html
https://ioactive.com/a-short-tale-about-executable_stack-in-elf_read_implies_exec-in-the-linux-kernel/
https://ioactive.com/a-short-tale-about-executable_stack-in-elf_read_implies_exec-in-the-linux-kernel/
https://news.ycombinator.com/item?id=39874404
https://gcc.gnu.org/legacy-ml/gcc-patches/2004-09/msg02055.html
https://jfrog.com/blog/xz-backdoor-attack-cve-2024-3094-all-you-need-to-know/#:~:text=TL%3BDR%20%E2%80%93%20the%20end%20goal,executed%20before%20the%20authentication%20step%2C
https://jfrog.com/blog/xz-backdoor-attack-cve-2024-3094-all-you-need-to-know/#:~:text=TL%3BDR%20%E2%80%93%20the%20end%20goal,executed%20before%20the%20authentication%20step%2C
https://jfrog.com/blog/xz-backdoor-attack-cve-2024-3094-all-you-need-to-know/#:~:text=TL%3BDR%20%E2%80%93%20the%20end%20goal,executed%20before%20the%20authentication%20step%2C
https://jfrog.com/blog/xz-backdoor-attack-cve-2024-3094-all-you-need-to-know/#:~:text=TL%3BDR%20%E2%80%93%20the%20end%20goal,executed%20before%20the%20authentication%20step%2C

[53] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-Pointer Integrity,” in Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Broomfield,
Colorado, Oct. 2014, pp. 147–163.

[54] K. Kylheku, “Warn HN: Stacks Made Executable on GNU by Mere
Presence of Assembly Code,” https://news.ycombinator.com/item?id
=11599909, Apr. 2016.

[55] K. MacDermid, “Disable Executable Stacks on Assembly Objects,”
https://github.com/zerotier/ZeroTierOne/pull/2071, Aug. 2023.

[56] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:
Cryptographically Enforced Control Flow Integrity,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security
(CCS), Denver, Colorado, Oct. 2015, pp. 941–951.

[57] J. Mason, S. Small, F. Monrose, and G. MacManus, “English Shell-
code,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS), Chicago, IL, Nov. 2009, pp. 524–533.

[58] D. Maynor, “NX: How Well does it Say NO to Attackers’ eXecution At-
tempts,” https://www.blackhat.com/presentations/bh-usa-05/bh-us-05-m
aynor.pdf, Las Vegas, NY, Jul. 2005, Black Hat USA Briefings.

[59] S. McCamant and G. Morrisett, “Evaluating SFI for a CISC Architecture,”
in Proceedings of the 15th USENIX Security Symposium (USENIX
Security), Vancouver, Canada, Jul. 2006, pp. 209–224.

[60] Microsoft, “Data Execution Prevention (DEP),” May 2023,
https://learn.microsoft.com/en-us/windows/win32/memory/data-e
xecution-prevention.

[61] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan, “RockSalt:
Better, Faster, Stronger SFI for the x86,” in Proceedings of the 2012
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Beijing, China, Jun. 2012, pp. 395–404.

[62] J. R. Moser, “libffi Executable Stack (Missing .note.GNU-stack on .o
Files),” https://gcc.gnu.org/bugzilla/show_bug.cgi?id=28036, Jun. 2006.

[63] Nergal, “The Advanced Return-into-lib(c) Exploits (PaX Case Study),”
http://phrack.org/issues/58/4.html, Dec. 2001, Phrack.

[64] B. Niu and G. Tan, “Modular Control-Flow Integrity,” in Proceedings of
the 2014 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Edinburgh, UK, Jun. 2014.

[65] ——, “RockJIT: Securing Just-In-Time Compilation using Modular
Control-Flow Integrity,” in Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS), Scottsdale, Arizona,
Nov. 2014, pp. 1317–1328.

[66] ——, “Per-Input Control-Flow Integrity,” in Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS),
Denver, Colorado, Oct. 2015.

[67] A. One, “Smashing the Stack for Fun and Profit,” Phrack magazine,
vol. 7, no. 49, pp. 14–16, 1996.

[68] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “Sok: All You Ever Wanted to Know About x86/x64 Binary
Disassembly but Were Afraid to Ask,” in Proceedings of the 42nd IEEE
Symposium on Security and Privacy (IEEE S&P), Virtually, May 2021,
pp. 833–851.

[69] B. V. Patel, “A Technical Look at Intel’s Control-flow En-
forcement Technology,” Intel,[Online]. Available: https://www. in-
tel. com/content/www/us/en/developer/articles/technical/technical-look-
control-flow-enforcement-technology. html, 2020.

[70] D. Patel, A. Basu, and A. Mathuria, “Automatic Generation of Compact
Printable Shellcodes for x86,” in 14th USENIX Workshop on Offensive
Technologies (WOOT 20), 2020.

[71] PaX Team, “PaX Address Space Layout Randomization (ASLR),”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[72] M. Prasad and T.-c. Chiueh, “A Binary Rewriting Defense against Stack
based Buffer Overflow Attacks,” in Proceedings of the 2003 USENIX
Annual Technical Conference (ATC), San Antonio, TX, Jun. 2003, pp.
211–224.

[73] S. Priyadarshan, H. Nguyen, R. Chouhan, and R. Sekar, “{SAFER}:
Efficient and {Error-Tolerant} binary instrumentation,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 1451–1468.

[74] C. Qian, H. Hu, M. A. Alharthi, P. H. Chung, T. Kim, and W. Lee,
“RAZOR: A Framework for Post-deployment Software Debloating,” in
Proceedings of the 28th USENIX Security Symposium (USENIX Security),
Santa Clara, CA, USA, Aug. 2019.

[75] “Personality – Set the Process Execution Domain (READ_IMPLIES_-
EXEC),” https://man7.org/linux/man-pages/man2/personality.2.html,
Linux man-pages 6.04.

[76] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain Keys–Efficient In-Process
Isolation for RISC-V and x86,” in Proceedings of the 29th USENIX
Security Symposium (USENIX Security), Virtually, Aug. 2020, pp. 1677–
1694.

[77] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and
T. Holz, “Counterfeit Object-Oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy (IEEE S&P), San
Jose, CA, May 2015.

[78] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit Hardening
Made Easy,” in Proceedings of the 20th USENIX Security Symposium
(USENIX Security), San Francisco, CA, Aug. 2011.

[79] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-
libc without Function Calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, Oct.–Nov. 2007, pp. 552–561.

[80] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok: (State of) The
Art of War: Offensive Techniques in Binary Analysis,” in Proceedings
of the 37th IEEE Symposium on Security and Privacy (IEEE S&P), San
Jose, CA, May 2016.

[81] E. H. Spafford, “The Internet Worm Program: An Analysis,” ACM
SIGCOMM Computer Communication Review, vol. 19, no. 1, pp. 17–57,
1989.

[82] J. Strandboge, “ExecutableStacks,” https://wiki.ubuntu.com/SecurityTe
am/Roadmap/ExecutableStacks.

[83] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in Proceedings of the 34th IEEE Symposium on Security and
Privacy (IEEE S&P), San Francisco, CA, May 2013, pp. 48–62.

[84] I. L. Taylor, “Executable Stack,” https://www.airs.com/blog/archives/518,
Jun. 2011.

[85] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow Integrity
in GCC & LLVM,” in Proceedings of the 23rd USENIX Security
Symposium (USENIX Security), San Diego, CA, Aug. 2014, pp. 941–955.

[86] “CockroachDB Customers,” https://www.cockroachlabs.com/customers/,
(visited in October 2023).

[87] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, Efficient In-process Isolation
with Protection Keys (MPK),” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security), Santa Clara, CA, USA, Aug.
2019, pp. 1221–1238.

[88] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical Context-Sensitive
CFI,” in Proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS), Denver, Colorado, Oct. 2015, pp. 927–
940.

[89] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
Software-based Fault Isolation,” in Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP), Asheville, NC,
Dec. 1993, pp. 203–216.

[90] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna, “Ramblr: Making Reassembly Great Again,”
in Proceedings of the 24th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb.–Mar. 2017.

[91] S. Wang, P. Wang, and D. Wu, “Reassembleable Disassembling,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Security),
Washington, DC, Aug. 2015, pp. 627–642.

[92] C. Wellons, “Infectious Executable Stacks,” https://nullprogram.com/bl
og/2019/11/15/, Nov. 2019.

[93] D. Williams-King, H. Kobayashi, K. Williams-King, G. Patterson,
F. Spano, Y. J. Wu, J. Yang, and V. P. Kemerlis, “Egalito: Layout-agnostic
Binary Recompilation,” in Proceedings of the 25th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Lausanne, Switzerland, Mar. 2020, pp.
133–147.

[94] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native Client: A Sandbox for Portable,
Untrusted x86 Native Code,” in Proceedings of the 30th IEEE Symposium
on Security and Privacy (IEEE S&P), Oakland, CA, May 2009.

[95] B. Zeng, G. Tan, and Ú. Erlingsson, “Strato: A Retargetable Framework
for Low-level Inlined-reference Monitors,” in Proceedings of the 22nd
USENIX Security Symposium (USENIX Security), Washington, DC, Aug.
2013, pp. 369–382.

16

https://news.ycombinator.com/item?id=11599909
https://news.ycombinator.com/item?id=11599909
https://github.com/zerotier/ZeroTierOne/pull/2071
https://github.com/zerotier/ZeroTierOne/pull/2071
https://www.blackhat.com/presentations/bh-usa-05/bh-us-05-maynor.pdf
https://www.blackhat.com/presentations/bh-usa-05/bh-us-05-maynor.pdf
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=28036
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://man7.org/linux/man-pages/man2/personality.2.html
https://wiki.ubuntu.com/SecurityTeam/Roadmap/ExecutableStacks
https://wiki.ubuntu.com/SecurityTeam/Roadmap/ExecutableStacks
https://www.airs.com/blog/archives/518
https://www.cockroachlabs.com/customers/
https://nullprogram.com/blog/2019/11/15/
https://nullprogram.com/blog/2019/11/15/

[96] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical Control Flow Integrity and Randomization for
Binary Executables,” in Proceedings of the 34th IEEE Symposium on
Security and Privacy (IEEE S&P), San Francisco, CA, May 2013.

[97] M. Zhang and R. Sekar, “Control Flow and Code Integrity for COTS
Binaries: An Effective Defense against Real-world ROP Attacks,”

in Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC), Los Angeles, CA, Dec. 2015, pp. 91–100.

[98] ——, “Control Flow Integrity for COTS Binaries,” in Proceedings of
the 24th USENIX Security Symposium (USENIX Security), Washington,
DC, Aug. 2015.

17

	Introduction
	Background and Problem
	Code Injection and WX
	Problem Definition

	Overview
	Investigating Security Tools
	Inlined Reference Monitor (IRM)
	Methodology
	Result and Implication

	Analyzing WX Enforcement
	Compilation
	Assembling
	Linking
	Main Binary Loading
	Shared Library Loading
	Putting Everything Together

	Problem Generalization
	Discussion
	Malicious Attacks via BadAss
	Mitigations of BadAss
	Related Discussions
	WX on Other Operating Systems
	Security Issue within [0.5].note Section

	Conclusion
	References

