
BET: Black-Box Efficient Testing for Convolutional Neural
Networks

Jialai Wang∗

Tsinghua University, BNRist
Beijing, China

wangjl19@mails.tsinghua.edu.cn

Han Qiu∗2

Tsinghua University
Beijing, China

qiuhan@tsinghua.edu.cn

Yi Rong3

Tsinghua University
Beijing, China

rongy19@mails.tsinghua.edu.cn

Hengkai Ye
Purdue University

West Lafayette, IN, USA
ye286@purdue.edu

Qi Li∗§

Tsinghua University, BNRist
Beijing, China

qli01@tsinghua.edu.cn

Zongpeng Li∗

Tsinghua University
Beijing, China

zongpeng@tsinghua.edu.cn

Chao Zhang∗2§

Tsinghua University, BNRist
Beijing, China

chaoz@tsinghua.edu.cn

ABSTRACT

It is important to test convolutional neural networks (CNNs) to

identify defects (e.g. error-inducing inputs) before deploying them

in security-sensitive scenarios. Although existing white-box test-

ing methods can effectively test CNN models with high neuron

coverage, they are not applicable to privacy-sensitive scenarios

where full knowledge of target CNNmodels is lacking. In this work,

we propose a novel Black-box Efficient Testing (BET) method for

CNN models. The core insight of BET is that CNNs are generally

prone to be affected by continuous perturbations. Thus, by gener-

ating such continuous perturbations in a black-box manner, we

design a tunable objective function to guide our testing process for

thoroughly exploring defects in different decision boundaries of the

target CNN models. We further design an efficiency-centric policy

to find more error-inducing inputs within a fixed query budget.

We conduct extensive evaluations with three well-known datasets

and five popular CNN structures. The results show that BET sig-

nificantly outperforms existing white-box and black-box testing

methods considering the effective error-inducing inputs found in

a fixed query/inference budget. We further show that the error-

inducing inputs found by BET can be used to fine-tune the target

model, improving its accuracy by up to 3%.

∗Institute for Network Sciences and Cyberspace, Tsinghua University
2Corresponding author
3School of Software, Tsinghua University
§Zhongguancun Lab

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9379-9/22/07.
https://doi.org/10.1145/3533767.3534386

CCS CONCEPTS

· Computing methodologies→ Neural networks; · Software

and its engineering→ Software testing and debugging.

KEYWORDS

Convolutional Neural Networks, Black-box Testing

ACM Reference Format:

Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao

Zhang. 2022. BET: Black-Box Efficient Testing for Convolutional Neural

Networks. In Proceedings of the 31st ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA ’22), July 18ś22, 2022, Virtual, South

Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3533767.

3534386

1 INTRODUCTION

Convolutional neural networks (CNNs) [11] are widely deployed

in security-sensitive applications, such as autonomous driving [3],

face recognition [29], blockchain forensics [17], and malware de-

tection [34]. Recent studies [10, 27, 46] suggest that CNNs may

have unexpected or incorrect prediction behaviors due to biased

training data, overfitting, or modified model’s inconsistency. To

safeguard the accuracy of CNNs, various testing methods have been

proposed [6, 7, 19, 28, 31, 49, 50]. They aim at identifying defects

of CNN models such as finding adversarial inputs which induce

errors. These error-inducing inputs can be used to fine-tune the

model to improve its classification accuracy [22, 31].

Most existing testing methods work in white-box scenarios to

explore the internal states of CNN models [7, 12, 19, 31]. Basically,

they rely on either a predetermined [31] or an adaptive neuron-

selection strategy [19] to achieve high neuron coverage and to

identify error-inducing inputs. Although these methods can ef-

fectively identify defects for neural network models, they often

require full inner knowledge of target models (i.e. structures and

parameters). This is impractical in use cases such as differential

testing [32, 46] that performs on multiple models and testers only

have the inner knowledge of their own models but cannot access

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

164

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3533767.3534386
https://doi.org/10.1145/3533767.3534386
https://doi.org/10.1145/3533767.3534386
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3533767.3534386&domain=pdf&date_stamp=2022-07-18

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao Zhang

the other models. Moreover, white-box requirements for privacy-

sensitive model testing scenarios are also hard to meet. For instance,

model owners may allow a third-party to test their model but an

łhonest but curiousž third-party [30] may cause model leakage.

Black-box testing methods are proposed to fill such gaps [28, 46].

A typical black-box testing method finds the defects or inconsis-

tencies of models by continuously querying and updating samples

according to the returned inference results. Without any inner

knowledge of target models, black-box testing methods cannot

measure the coverage but can only find error-inducing inputs with

diversified labels. Since such approaches usually require a large

number of queries, the main challenge of black-box testing methods

is to find error-inducing inputs in a query-efficient manner.

In this work, we present BET, a novel query-efficient black-box

testing method for CNN models. Based on analyzing the general

characteristics of CNNmodels, we use local receptive fields of CNNs

to guide the perturbation generation and craft test cases. We find

that a CNN model’s kernel can always be split into multiple contin-

uous zones where the corresponding weights have the same sign

(+/−). Applying continuous perturbations with matching shapes

and signs to these zones can alter predictions to find error-inducing

inputs. Thus, we craft test cases by adding such continuous per-

turbations directly to them (e.g. modifying pixel values of images)

without requiring any inner knowledge of target models. Note that

BET clearly departs from the white-box testing methods that first

rely on gradient-based calculation and then transfer calculated dec-

imals back to integers which may lead to ineffective samples (see

inactivation issue in Section 4.3). We design a tunable objective

function to guide the testing process to explore defects in more

decision boundaries of CNNs, to diversify error-inducing inputs’

labels. We also design an efficiency-centric policy to improve the

query-efficiency of BET. Furthermore, the error-inducing inputs

found by BET can be used to fine-tune the target model to improve

the accuracy.

We conduct extensive evaluation of BET on three well-known

datasets, i.e., CIFAR-10 [18], Tiny-ImageNet [1], and ImageNet [35],

with five well-known CNN structures, i.e., VGG16 [37], VGG19 [37],

ResNet18 [14], ResNet50 [14], and ResNet56 [15]. We compare our

method BET with a highly-related black-box testing method [46]

and four state-of-the-art white-box testing methods [7, 12, 19, 31].

Results show that our BET can acquire more error-inducing inputs

with more diversified labels with a fixed query/inference budget.

Moreover, these error-inducing inputs can improve target models’

accuracy by 2 ∼ 3% with a few epochs of fine-tuning.

In summary, our contributions are as follows:

• We propose a novel black-box testing method BET for CNNs

which exploits the insight that CNNs are prone to be affected by

continuous perturbations related to local receptive fields.

• We design an efficiency-centric policy that enables BET to find

error-inducing inputs in a query-efficient manner with a fixed

query/inference budget.

• We conduct extensive evaluations to show that BET can outper-

form both black-box and white-box baseline testing methods in

the efficiency of finding error-inducing inputs.

• We show that the error-inducing inputs found by BET can be

used to fine-tune target models to improve accuracy by up to 3%.

Input Data

Kernel

Convolution Output

Figure 1: Simplified convolution operation.

2 BACKGROUND

2.1 The Workflow of CNNs

A convolutional neural network (CNN) is a widely-used class of

deep neural network (DNN) which is also popular to be chosen as

the testing target model in recent related works [7, 12, 19, 31, 45, 46].

CNNs are comprised of three types of layers: convolutional layers,

pooling layers, and fully-connected layers. The convolutional layer

is the core building block of CNNs and performs the convolution

operation, which is a linear operation that involves the multipli-

cation of a set of weights (called a kernel) with the input. Figure 1

illustrates a simplified convolution.

Given a kernel with 𝑛 weights𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛}, an input

data (image) 𝑥 and one of its region with the same shape 𝑃 =

{𝑝1, 𝑝2, ..., 𝑝𝑛}. The output of the convolution operation in a CNN

model is defined as in Equation 1.

𝑂𝑢𝑡 =𝑊 · 𝑃 =

𝑛∑

𝑖=1

𝑤𝑖 ∗ 𝑝𝑖 , (1)

The kernel will be systematically applied to each region of the

same shape as the kernel (even overlapping regions) of the input

data (e.g. an image), from left to right and from top to bottom, to

form a convolutional output data.

2.2 Related Work

Testing CNNs. The crux of CNN testing lies in the generation of

test cases that explore incorrect behaviors of CNN models. The

current testing techniques for finding CNNs’ incorrect behaviors

are analogous to coverage-guided fuzzing techniques [8, 48], which

are used to maximize code coverage in finding software bugs. Sim-

ilarly, existing CNN testing techniques define specific coverage

metrics [16, 21, 31, 36, 38ś40] called neuron coverage. They aim

to fully explore the inner states of CNN models by maximizing

the neuron coverage. These testing techniques adopt various algo-

rithms to maximize neuron coverage and find incorrect behaviors

of CNNs, i.e., error-inducing inputs. However, such metrics are

not suitable for black-box testing techniques as neuron coverage

needs to be acquired with full knowledge of target CNN models, e.g.

models’ parameters. Existing black-box testing techniques [28, 46]

could only rely on CNNs’ outputs as feedback to guide the testing

process and find error-inducing inputs.

165

BET: Black-Box Efficient Testing for Convolutional Neural Networks ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

There are two common scenarios for CNN testing, i.e., differ-

ential testing (DT) [31, 46] and single model testing (ST) [12, 19].

DT finds error-inducing inputs which trigger behavior inconsisten-

cies among multiple models that have similar functionality (e.g.,

models of self-driving cars by Google and Tesla) and can work

without labeled data. For example, given two CNN models 𝐶1,𝐶2

with similar functionality, an error-inducing input 𝑥𝑒𝑟𝑟 is found

if 𝐶1 (𝑥𝑒𝑟𝑟) ≠ 𝐶2 (𝑥𝑒𝑟𝑟). ST only focuses on one target model 𝐶 to

find error-inducing inputs and requires labels for test data. For

example, given a CNN model under test 𝐶 , an original input 𝑥 and

the corresponding label 𝑙 , an error-inducing input 𝑥𝑒𝑟𝑟 is found if

𝐶 (𝑥𝑒𝑟𝑟) ≠ 𝑙 .

Recent testing methods can be generally classified into two cat-

egories, i.e., white-box testing [7, 12, 19, 31] and black-box test-

ing [28, 46], according to the transparency degree of CNNs. Details

are given as follows.

White-box testing methods. Pei et al. [31] focus on DT and pro-

pose the concept of neuron coverage to represent the internal states

of target models. They use gradient ascent to find error-inducing

inputs while improving neuron coverage for exploring various in-

ternal states of target models. Differently, Guo et al. [12] focus on

ST and introduce the fuzzing idea [48] to test CNNs. The testing

is guided by the neuron coverage proposed by DeepXplore [31],

i.e., updating seed corpus and prioritizing test cases according to

coverage guidelines. Xie et al. [45] propose DeepHunter, which

generates perturbations by metamorphic mutations rather than

computing gradients of optimization functions. Lee et al. [19] re-

fine the white-box testing methods. They find that most white-box

testing methods are limited to fixed neuron-selection strategies

while using neuron coverage to guide testing. Correspondingly,

they propose a dynamic neuron-selection strategy, which is dynam-

ically adjusted through online learning. Wang et al. [43] focus on

improving model robustness against adversarial attacks [41], thus

compromising model accuracy, which is different from mainstream

testing methods aiming to improve model accuracy.

Black-box testing methods. Odena et al. [28] propose the first

black-box testing method for ST, TensorFuzz, which is based on

a coverage-guided testing technique and directly adopts CNN’s

outputs as the coverage. They add random noise to test cases, which

restricts their efficiency in finding effective error-inducing inputs.

Xie et al. [46] propose a black-boxmethod for DT, DiffChaser, which

uses a genetic algorithm to find error-inducing inputs to test the

inconsistency of a CNN model and its compressed version. These

black-box methods require abundant queries to find error-inducing

inputs and are not efficient.

Overall, existing white-box testing techniques mainly aim to

achieve high coverage but require full knowledge of target CNN

models, which limits their applications scenarios. Meanwhile, we

note that existing black-box testing techniques aim to find error-

inducing inputs by queries but are not highly efficient.

3 METHODOLOGY

3.1 Key Insight

A convolutional kernel can be split into multiple continuous zones

where the corresponding weights have the same sign (+ or −).

U1 U2 U3 U4

U5
U6
U7
U8
…
Um-1
Um

Figure 2: Continuous zones {𝑈1,𝑈2, ...,𝑈𝑚} of a kernel𝑊 .

Perturbations that have the same signs in each zone are called

continuous perturbations.

After analyzing the workflow of CNNs, we find that they have

a weakness regarding error-inducing inputs: CNNs are prone to be

affected by continuous perturbations. Generally speaking, given an

input 𝑥 , continuous perturbations can maximize the output changes

of the first convolutional layer that operates on 𝑥 . The change on

these output values will propagate to inner layers. Then, once the

input of an inner layer has been significantly changed, such change

propagates and may eventually cause the prediction result cross

the decision boundary of CNNs to generate error-inducing inputs.

The analysis of this weakness is formulated as follows. Given a

convolution kernel with𝑛 weights𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛}, an original

input𝑥 and one of its regionwith the same shape 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛},

perturbations 𝛿 to apply, and the yielded test case 𝑥 = 𝑥 + 𝛿 . The

output of the convolution operation is defined in Equation 2.

ˆ𝑂𝑢𝑡 =𝑊 · 𝑃 =

𝑛∑

𝑖=1

(𝑤𝑖 × 𝑝𝑖), (2)

Given Equation 1 and 2, and the fact that an error-inducing input

needs to cross the decision boundary of its original prediction, we

hope to maximize 𝐷𝑖 𝑓 = | ˆ𝑂𝑢𝑡 −𝑂𝑢𝑡 |. Specifically, 𝐷𝑖 𝑓 represents

changes that will propagate to inner layers behind the current

convolutional layer. We can represent all following inner layers

as a function 𝐹 . In general, the bigger the 𝐷𝑖 𝑓 , the more likely

𝐹 (𝑂𝑢𝑡 ± 𝐷𝑖 𝑓) ≠ 𝐹 (𝑂𝑢𝑡), i.e., the more likely to acquire error-

inducing inputs. 𝐷𝑖 𝑓 can be computed as in Equation 3.

𝐷𝑖 𝑓 = |𝑊 · 𝛿 | = |

𝑛∑

𝑖=1

(𝑤𝑖 × 𝛿𝑖) |, (3)

where 𝛿 = {𝛿1, 𝛿2, ..., 𝛿𝑛} is the corresponding part of 𝛿 . The goal is

maximizing 𝐷𝑖 𝑓 . In white-box settings,𝑊 is fixed and known by

the tester, thus this optimization problem is straightforward.

In black-box scenarios,𝑊 is still fixed but unknown to us. How-

ever, we notice that𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛} can be split into a batch

of kernel zones𝑈 = {𝑈1,𝑈2, ...,𝑈𝑚}, where

• For ∀𝑖 ≠ 𝑗,𝑈𝑖 ∩𝑈 𝑗 = ∅, and

• 𝑊 = 𝑈1 ∪𝑈2, ...,∪𝑈𝑚 (𝑚 ≤ 𝑛).

Here 𝑈𝑖 is a part of𝑊 , whose elements are adjacent and have the

same sign, and
∑𝑚
𝑖=1 |𝑈𝑖 | = 𝑛. Figure 2 illustrates the split of an

166

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao Zhang

Current Best
Test Case

Original

Input

Square

Slicing

Linear

Slicing

Sensing

Slice Size

Generating Continuous

Perturbations

Mutator

Perturbation

Value

Choosing

Slice Order
Adjusting

Change

Label

Query

Exhausted?

Tunable

Objective Function

Current

Label

Yes No

CNNs Under

Test

Error-Inducing

Inputs

Classify

Modified

Test Case

Update

Policy: P1

Policy: P2

Figure 3: BET workflow.

example kernel. Then we can rewrite 𝐷𝑖 𝑓 in Equation 4.

𝐷𝑖 𝑓 = |𝑊 · 𝛿 | = |

𝑚∑

𝑖=1

(𝑈𝑖 × 𝛿𝑖) |, (4)

where 𝛿 = {𝛿1, 𝛿2, ..., 𝛿𝑚} is the corresponding part of the perturba-

tion 𝛿 , different from the definition in Equation 3.

For simplicity, we fixate the absolute value of 𝛿𝑖 as 𝜖 in BET, and

try to find proper signs to maximize 𝐷𝑖 𝑓 . Note that, the pertur-

bations can be divided into two general categories, i.e., discrete

perturbations 𝛿𝑑𝑖𝑠 and continuous perturbations 𝛿𝑐𝑜𝑛 . (1) For dis-

crete perturbations𝛿𝑑𝑖𝑠 , where the signs of 𝛿𝑑𝑖𝑠_𝑖 ∈ 𝛿𝑑𝑖𝑠 are random,

the corresponding 𝐷𝑖 𝑓 is represented as 𝐷𝑖 𝑓𝑑𝑖𝑠 . (2) For continuous

perturbations 𝛿𝑐𝑜𝑛 , the signs of 𝛿𝑐𝑜𝑛_𝑖 ∈ 𝛿𝑐𝑜𝑛 are the same as𝑈𝑖 ’s.

The corresponding 𝐷𝑖 𝑓 is represented as 𝐷𝑖 𝑓𝑐𝑜𝑛 .

Since all elements in𝑈𝑖 have the same sign, we can induce that

𝑈𝑖 × 𝛿𝑐𝑜𝑛_𝑖 is positive and is larger than |𝑈𝑖 × 𝛿𝑑𝑖𝑠_𝑖 |, which makes

𝐷𝑖 𝑓𝑑𝑖𝑠 = |
∑𝑚
𝑖=1 (𝑈𝑖 × 𝛿𝑑𝑖𝑠_𝑖) | < |

∑𝑚
𝑖=1 (𝑈𝑖 × 𝛿𝑐𝑜𝑛_𝑖) | = 𝐷𝑖 𝑓𝑐𝑜𝑛 . In

other words, if we elaborately craft continuous perturbations to

match convolution kernels, the yielded 𝐷𝑖 𝑓 would be the largest

and is more likely to affect the predictions of CNNs.

In summary, CNNs are prone to be affected by continuous pertur-

bations. However, in black-box settings, it is impossible to perfectly

match the unknown kernel to generate continuous perturbations.

But still, we can approximately match convolution kernels which

can still be effective to perform black-box testing.

3.2 Workflow of BET

The overall workflow of BET is shown in Figure 3. BET initializes

the current best test case with the given original input. Then, BET

iteratively searches error-inducing inputs based on the current best

test case. Particularly, in each iteration, BET generates continuous

perturbations and adds perturbations to the current best test case

to get the modified test case. Then, the modified test case is sent to

query target models to check whether an error-inducing input is

acquired. The tunable objective function decides whether to update

the current best test case with the modified test case. The whole

process iterates until the query budget is exhausted.

The BET workflow consists of three main parts. (1) Tunable ob-

jective function: this objective function guides the testing process

to explore different decision boundaries of CNNs. (2) Efficiency-

centric policy: this policy improves our testing efficiency. It re-

stricts only one output that will be derived after adding perturba-

tions and chooses only the best one that will be kept for further

testing. (3)Mutator: this module generates continuous perturba-

tions with basic shapes according to the core insight. Particularly,

in each iteration of the testing, after the mutator module generates

continuous perturbations with basic shapes, the objective function

decides whether to save current perturbations and dynamically

drive the perturbations’ shapes towards the underlying convolu-

tion kernels.

3.3 Tunable Objective Function

Our tunable objective function guides the testing process and thus

is essential for BET to explore different decision boundaries and

thoroughly test CNNs. Specifically, during the test process, per-

turbations with higher objective function scores will be saved for

further optimization. If the objective function targets a specific label,

the testing process will be led to enter the decision boundary of this

specific label to explore corner cases, i.e., generate error-inducing

167

BET: Black-Box Efficient Testing for Convolutional Neural Networks ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

inputs with the corresponding label. Besides, the objective function

is tunable, i.e., its specific label will change dynamically (after a

given query budget 𝑡). Thus, BET could explore different decision

boundaries and perform thorough testing.

We propose tunable objective functions for different testing sce-

narios, i.e., the DT and the ST.

Tunable objective function for DT. For DT, we hope to identify

inputs that can maximize the prediction difference between the

target model with other models. So testers will prioritize exploit-

ing error labels for DT. Given an input 𝑥 , labels 𝐿 = {𝑙1, 𝑙2, ...𝑙𝑛}

(including all classes except for 𝑥 ’s original label), and query bud-

gets {𝑡1, 𝑡2, ...𝑡𝑛}, the target CNN under test 𝐶 , 𝑥 ’s original label

𝑙0 = 𝐶 (𝑥), and other models𝐶 = {𝐶1,𝐶2, ...𝐶𝑛} for DT. The tunable

objective function for DT is defined in Equation 5.

𝐷𝑂𝐹 (𝑥) = 𝐶 (𝑥) [𝑙𝑖] +

𝑛∑

𝑖=1

|𝐶 (𝑥) [𝑙0] −𝐶𝑖 (𝑥) [𝑙0] |, (5)

where the label 𝑙𝑖 is selected from 𝐿 in order (𝑙𝑖 ∈ 𝐿). Each label

𝑙𝑖 will be used for 𝑡𝑖 . In Equation 5, the first term 𝐶 (𝑥) [𝑙𝑖] means

fully exploring the target model 𝐶 , where 𝑙𝑖 is dynamically ad-

justed for exploring different decision boundaries of the model.

The second term
∑𝑛
𝑖=1 |𝐶 (𝑥) [𝑙0] −𝐶𝑖 (𝑥) [𝑙0] | aims to find disagree-

ments between the target model 𝐶 with a batch of other models

𝐶 = {𝐶1,𝐶2, ...𝐶𝑛}, as such disagreements indicate error-inducing

inputs are found. In each iteration, when a test case is derived, it

will be evaluated using this objective function, and saved for further

exploration if the evaluation result is better.

Tunable objective function for ST. Given an input 𝑥 and the test

model𝐶 , the tunable objective function for ST is given in Equation 6.

𝑆𝑂𝐹 (𝑥) = 𝐶 (𝑥) [𝑙𝑖], (6)

where 𝑙𝑖 is the same as in Equation 5. In Equation 6, we only optimize

𝐶 (𝑥) [𝑙𝑖], as ST focuses on the target model 𝐶 , and ground truth is

provided to indicate whether error-inducing inputs are found

The order of labels and the query budget 𝑡 are critical to the

objective function. (1) For label orders, we prioritize labels that are

prone to be vulnerable. Prioritizing error-prone areas could find

more error-inducing inputs with limited queries and computing

resources [47]. Particularly, we prioritize error-prone classes ac-

cording to the output confidence of the target CNN (the higher

the confidence score, the more priority). We also allow users to

prioritize labels as they want to support ad-hoc testing cases. For

example, given a face recognition model deployed in a company, it

is more risky if an ordinary employee is misclassified as a manager

rather than another ordinary employee. Thus, users may prioritize

finding error-inducing inputs that would be misclassified as man-

agers. (2) For the query budget 𝑡 , by default we consider the global

testing query budget and allocate it equally to each label. Similarly,

we also allow users to allocate customized query budgets.

3.4 Efficiency-Centric Policy

The efficiency-centric policy consists of two rules P1 and P2 to

achieve high efficiency of testing, i.e., acquiringmore error-inducing

inputs with more diversified labels with a fixed query budget.

P1: Only one current best test case will be kept by BET in each

iteration. When a newly modified test case gets closer to the

optimization target according to the objective function, then

the current best test case will get updated.

P2: Only one modified test case will be derived in each iteration,

i.e., by adding perturbations to a chosen area of the current

best test case, to further restrain useless test cases from being

generated and queried. The granularity of perturbations gets

finer during testing, i.e., from coarse-grained to fine-grained,

to make the optimization converge faster. Perturbation areas

in multiple iterations are different (i.e., avoiding redundant

test cases) and could jointly cover the whole test case (i.e.,

avoiding missing critical areas).

Our policy is derived from stochastic greedy [24] and the novelty

of this policy mainly reflects in two points. (1) Existing solutions,

in general, maintain a batch of test cases and derive a set of test

cases in each iteration. BET only maintains the current best test

case and derives only one modified test case in each iteration. This

makes testing more efficient, as discussed in the following. (2) Sto-

chastic greedy randomly selects perturbations from a corpus, but

BET chooses perturbations from coarse-grained to fine-grained and

avoids duplications of perturbation areas.

Efficiency Analysis. The efficiency-centric policy plays a key role

in making testing query-efficient. Here, we explain our efficient

policy and give the corresponding time complexity analysis.

Testing CNNs is an optimization problem since the goal is to

maximize the objective function (details of the objective function are

presented in Section 3.3) which can eventually find error-inducing

inputs. However, maximizing the objective function is an NP-hard

issue. Specifically, given a set of perturbations 𝑁 with 𝑛 elements

and the objective function 𝐹 (𝑁), it has to take 𝑛! different cases

into consideration to maximize 𝐹 (𝑁). Thus, the time complexity of

testing is 𝑂 (𝑛!), which is unaffordable for testing CNNs.

Fortunately, in a testing task, we only need to find a feasible

error-inducing input rather than finding the optimal one. As shown

in previous works [2, 26], greedy algorithms are widely used to

approximate the optimal solution. Specifically, for a testing task,

the greedy algorithm needs to maximize 𝐹 (𝐴), where 𝐹 is a target

function and 𝐴 is the solution to the problem. At first 𝐴 = ∅, in

each iteration of the optimization process, the algorithm needs to

(1) traverse 𝑁 \𝐴, (2) select the best element 𝑒 ∈ 𝑁 \𝐴, (3) and then

add 𝑒 to 𝐴. After running the maximum number of iterations 𝑀 ,

we could get the 𝐴, where 𝐴 ⊆ 𝑁 and |𝐴| = 𝑀 . Thus, the time

complexity reduces to 𝑂 (𝑀𝑛) but is still high.

To further reduce the time complexity, we deploy the stochastic

greedy [24] to achieve a time complexity of 𝑂 (𝑛 log 1
𝜃
), where 𝜃

is the hyperparameter. For stochastic greedy policy, in each itera-

tion of the optimization process, BET randomly samples 𝑛
𝑀 log 1

𝜃
elements in 𝑁 \𝐴 to choose the best one rather than traversing all

elements in 𝑁 \𝐴. It can approximate the optimal solution with

a probability equals to 1 − 1
𝑒 − 𝜃 [24]. In our design, we adapt

stochastic greedy to build a new efficiency-centric policy: (1) the

policy restricts the sample size 𝛼 from 𝑛
𝑀 log 1

𝜃
→ 1, minimizing

the time complexity in theory (𝛼 ∝ 1
𝜃
). (2) Rather than randomly

sampling elements in 𝑁 \𝐴 as stochastic-greedy does, our policy

avoids adding perturbations repeatedly (i.e., avoid redundant test

cases) and samples different perturbations from coarse-grained to

fine-grained to accelerate convergence.

168

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao Zhang

3.5 Mutator

The key insight of our method is to craft test cases by adding contin-

uous perturbations to utilize the weakness of CNNs. The mutator

module of BET generates a set of continuous perturbations with

basic shapes to craft test cases. During the testing, some qualified

perturbations will be saved according to our tunable objective func-

tion, which will dynamically get updated and be approximated to

the shape of the underlying convolution kernels.

Algorithm 1 depicts the workflow of the mutator module. To

craft the perturbations, the mutator splits all pixels of the test

case into multiple slices of the same size (i.e., having the same

number of pixels). In each iteration, we only add perturbations

(with the same size and shape) to one slice of the test case. All

slices will be updated one by one in multiple iterations. In this

way, no (potentially valuable) slices will be missed and no slices

will be added with redundant perturbations. The search space of

perturbations is thus greatly narrowed down which contributes to

improving query efficiency in finding error-inducing inputs.

Algorithm 1: The Workflow of the Mutator

Input: initial test case;
Output: E: error-inducing input corpus; D: diversified label corpus ;
curBest = input;

size = SLICESIZE;

sCount = len(input) / size;

slices1 = Square-Slicing(input, size);

slices2 = Linear-Slicing(input, size);

square, _ = IterSlices(slices1, sCount, input);

linear, _ = IterSlices(slices2, sCount, input);

slices_ori = (U(square) > U(linear)) ? slices1 : slices2;

// choose a better slicing method according to U, which is the

utility score of slicing methods

while not query budget exhausts do
curBest = input;

size = SLICESIZE;

sCount = len(input) / size;

slices = slices_ori;

while size >= STEP do
// split the test case into multiple slices of the

same size

slices = SplitEqually(slices, size);

size = size / STEP;

sCount = sCount * STEP;

curBest, Flag = IterSlices(slices, sCount, curBest);

if Flag == True then
break;

Function IterSlices(𝑠𝑙𝑖𝑐𝑒𝑠 , 𝑠𝐶𝑜𝑢𝑛𝑡 , 𝑐𝑢𝑟𝐵𝑒𝑠𝑡):
for i ∈ range(sCount) do

modified-test-case = AddPerturbations(curBest, slices[i]);

isErr, objScore, label = QueryCNNs(modified-test-case);

if isErr then
E = E ∪ modified-test-case ;

D = D ∪ label ;

if objScore >Tunable-Object-Func(curBest) then
curBest = modified-test-case;

Reorder(slices[i+1:]);

if query budget for current label exhausts then
Tunable-Object-Func changes label;

return curBest, True;

return curBest, False;

We give more details on how to slice the test cases and how to

generate continuous perturbations as follows.

Slice size: While splitting the test case into slices, the mutator

needs to specify slice size (the same as perturbation size). Particu-

larly, the test case is firstly split into larger slices (e.g., of size 1024

on ImageNet in our experiments). So we can query fewer times

and approach error-inducing input regions faster. Then, after larger

slices are all tested, we continue to split the test case into smaller

slices and update them one by one. In this way, we could zoom in

on the test case and add perturbations to smaller areas to approach

error-inducing inputs. Eventually, the slice size could be reduced to

1. For example, given a test case of 2048 bytes, we could split it into

2 slices of 1024 bytes, then 4 slices of 512 bytes, ..., and eventually

2048 slices of 1 byte. Note that, the slice size does not change along

with the current best seed.

Slicingmethod: For simplicity, BET splits larger slices into smaller

slices following the input order. We elaborate on how to design the

shape of slices as follows. Ideally, as we have declared in Section 3.1,

the shape of slices should match the shape of the convolution

kernels’ continuous zones (𝑆𝐶𝑍) to yield error-inducing inputs

faster. But we do not know 𝑆𝐶𝑍 in black-box scenarios and cannot

match them exactly. Instead, we can try to approximately match

𝑆𝐶𝑍 . We first formulate basic continuous shapes for perturbations,

i.e. square and line. As the optimization process goes on, BET adds

perturbations for smaller areas and saves qualified perturbations

according to the objective function. In summary, BET changes the

shape of perturbations dynamically to approximately match 𝑆𝐶𝑍 .

We provide two slicing methods for generating continuous per-

turbations, i.e., square slicingwhich divides input bytes into squares,

and linear slicing which divides input bytes into lines. These two

slicing methods formulate the basic shape of continuous perturba-

tions with the following two advantages. First, they are building

blocks for other shapes, useful for approximating 𝑆𝐶𝑍 . Second,

perturbations with these two shapes are easy to cover all elements

of inputs without overlapping.

For different inputs, BET needs to choose which slicing method

to use, i.e., square slicing or linear slicing. It relies on a delicate

sensing function to evaluate each slicing method’s 𝑆’ utility and

therefore make the decision. For each slicing method 𝑆 , we could

get a set of largest slices (e.g., of size 1024). Starting from a given

current best test case, we could add perturbations to these slices one

by one, and generate a new current best test case, whose confidence

score of the tunable objective function will increase (compared to

the old best test case’s) with Δ𝑖𝑛𝑐 , while its confidence score of

the maximum component will decrease with Δ𝑑𝑒𝑐 . Intuitively, in

a better optimization direction, most of the decrease Δ𝑑𝑒𝑐 should

contribute to the increase Δ𝑖𝑛𝑐 . Therefore, we calculate a utility

score of the slicing method 𝑆 as𝑈 (𝑆) = Δ𝑖𝑛𝑐/Δ𝑑𝑒𝑐 .

In experimentation, BET first tries square slicing to get the largest

slices and calculate its utility score𝑈 (𝑠𝑞𝑢𝑎𝑟𝑒). Then, BET uses lin-

ear slicing to get the largest slices and calculate its utility score

𝑈 (𝑙𝑖𝑛𝑒𝑎𝑟). If 𝑈 (𝑠𝑞𝑢𝑎𝑟𝑒) > 𝑈 (𝑙𝑖𝑛𝑒𝑎𝑟), BET chooses square slicing

method, otherwise BET chooses linear slicing method. This special

process is denoted as sensing which is useful for determining bet-

ter slicing methods. Note that several queries will be made to the

target CNNs in order to calculate the utility score of the slicing

methods but the query cost is still affordable.

169

BET: Black-Box Efficient Testing for Convolutional Neural Networks ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Slice order: The order of slices also matters. If perturbations

are added to slices with crucial bytes earlier, we could get error-

inducing inputs more efficiently. After adding perturbations to each

slice, we could get an objective function score. If this score is higher

than the score of the current best test case, we will update the

current best test case according to this score. Then, bytes in this

slice and neighbor slices are important. Therefore, we prioritize

neighbor slices that have not been traversed to the head of the

remaining slices to explore.

Perturbation values: Given the slice size, slicing method, and

slice order, we could determine which slice should be added with

perturbations in each iteration. The question to answer then is what

perturbation values will be added to the input bytes of each slice.

Note each byte has 256 kinds of perturbations. Thus, for input with

N pixels, the search space of perturbations is 256𝑁 which is too large

to explore efficiently. Instead, we limit the perturbations to each

byte to two choices {+𝜖 , −𝜖}, where 𝜖 is a hyperparameter specific

to application scenarios. Then, the search space of perturbations

greatly reduces to 2𝑁 .

Given an original input 𝐸𝑜 , a current best test case 𝐸𝑏 derived

from it, and a slice to add perturbations, we examine each byte

in the slice and add perturbations accordingly. Assuming the byte

being examined is the 𝑖-th byte in the test case if 𝐸𝑏 [𝑖] = 𝐸𝑜 [𝑖],

we randomly add perturbation value of +𝜖 or −𝜖 to this byte. If

𝐸𝑏 [𝑖] = 𝐸𝑜 [𝑖] − 𝜖 , we change this byte to 𝐸𝑜 [𝑖] + 𝜖 . Otherwise,

𝐸𝑏 [𝑖] = 𝐸𝑜 [𝑖] + 𝜖 must hold and we change this byte to 𝐸𝑜 [𝑖] − 𝜖 .

4 EVALUATION

In this section, we first evaluate the performance of BET on test-

ing CNNs and then compare it with the state-of-the-art black-box

and white-box testing methods on multiple CNNs and datasets in

both DT and ST scenarios. Furthermore, we evaluate the accuracy

improvement for target CNN models by fine-tuning with the error-

inducing inputs generated by BET. All experiments are conducted

on a machine with an Intel Xeon Gold 6154 CPU and four NVIDIA

Tesla V100 GPUs.

4.1 Experimental Setup

Datasets and models.We conduct our experiments on the follow-

ing three widely-used image datasets.

CIFAR-10 [18]: This dataset contains 50,000 training images and

10,000 testing images. Each image has a size of 32 × 32 × 3 and

belongs to one of 10 classes. We train target CNN models with

two widely used structures, i.e., VGG16 [37] and ResNet18 [14]. For

training these two models, we use SGD optimizer, and set learning

rate: 0.1, decay rate: 1e-6, momentum: 0.9, batch size: 128, epoch:

80, loss: cross entropy.

Tiny-ImageNet [1]: This dataset is a simplified version of ImageNet

consisting of color images with size 64×64×3 belonging to 200

classes. Each class has 500 training images and 50 validation im-

ages. We train target models with two widely used structures, i.e.,

VGG16 [37] and ResNet56 [14]. For training these two models, we

use SGD optimizer, and set learning rate: 0.01, decay rate: 5e-4,

momentum: 0.9, batch size: 128, epoch: 50, loss: cross entropy.

ImageNet [35]: This dataset contains about 1.2 million training

images, 50,000 validation images, and 100,000 testing images from

1,000 classes. We consider each image is resized to 224×224×3. We

use two widely used pretrained models from keras, i.e., VGG19 [37]

and ResNet50 [14] as our target CNNs.

In our experiments, we randomly selected 5000 images from

CIFAR-10 test set, 5000 images from Tiny-ImageNet, and ImageNet

validation sets, respectively, as our initial test cases. All these se-

lected images are initially correctly classified by target models.

Hyperparameters. We use the widely used 𝐿∞ metric [4] to re-

strict perturbations for error-inducing inputs on all compared meth-

ods. To set values of 𝐿∞, we first run all compared methods under

different 𝐿∞ for multiple times, and then we choose values that

make them perform relatively well, i.e., 𝐿∞ = 13/255 on all datasets

(all compared methods use the same setting). We set the fixed query

budget to 30,000 for each image on all datasets. As for our tunable

objective function, on CIFAR-10, we will consider all labels except

for their original label, and allocate query budget to each label as we

have mentioned in Section 3.3. On Tiny-ImageNet and ImageNet

whose classes are 200 and 1,000 respectively, due to query limits,

we only allocate query budget to 50 priority labels.

Metrics. We use the following commonly used metrics [19, 31, 46].

Err-Num.We compare the average number of error-inducing inputs

per image (Err-Num). The higher the Err-Num is, the more error-

inducing inputs are found to indicate a better testing result. It is

meaningful for a testingmethod to generate as many error-inducing

inputs as possible. These error-inducing inputs can be used to im-

prove model accuracy, e.g. fine-tuning models with error-inducing

inputs.

Label-Num. For each initial test case, BET may find multiple mis-

classified labels. Exploring different misclassified labels means ex-

ploring different decision boundaries of CNNs which means more

defects in the testing result. We compare the average number of

unique misclassified labels per image (Label-Num). The higher the

Label-Num is, the label of error-inducing inputs is more diversified

to indicate a better testing result.

SR. We compare the success rate (SR), which measures the percent-

age of original test cases that can find corresponding error-inducing

inputs. The higher the SR is, the better the testing method is. This

metric could reflect the effectiveness of testing methods.

4.2 Evaluation of Black-Box Differential
Testing

Baselines.We compare BET with the highly-related black-box test-

ing method DiffChaser [46]. We reproduce DiffChaser on the three

datasets used in this paper. We overlook to compare with Tensor-

Fuzz in DT scenarios as it has been demonstrated less effective than

DiffChaser for DT [46].

Constructing differentialmodels. To get a convincing DT result,

we directly use Tensorflow-Lite [5] (Tensorflow-Lite is among the

most popular tools for CNN model migration to Android and iOS

platforms) to construct quantized models for DT as DiffChaser

does. Tensorflow-Lite provides two quantization options to quantize

models, i.e., 16-bits and 8-bits quantization, which represent original

models quantized from 32-bits to 16-bits and 8-bits respectively of

floating precision. We apply these two options to all models and we

get corresponding 8-bits and 16-bits quantized models as shown

in Table 1. Then, we try to generate error-inducing inputs that

170

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao Zhang

Table 1: Datasets, target CNNs, and quantized CNNs (quan-

tization with 8-bits and 16-bits respectively).

Dataset Model 8-bits 16-bits

CIFAR-10
VGG16 VGG16-q8 VGG16-q16

ResNet18 ResNet18-q8 ResNet18-q16

Tiny-ImageNet
VGG16 VGG16-q8 VGG16-q16

ResNet56 ResNet56-q8 ResNet56-q16

ImageNet
VGG19 VGG19-q8 VGG19-q16

ResNet50 ResNet50-q8 ResNet50-q16

cause disagreements between the original model with its quantized

models. e.g., generating error-inducing inputs between ResNet50

with ResNet50-q8.

Results. Table 2, Table 3 and Table 4 show the results of DT

on all datasets and models, respectively. Overall, under the same

experimental conditions, BET significantly outperforms DiffChaser

on all comparison metrics. Details are described as follows.

Result of Err-Num.Our method BET acquires more Err-Num than

DiffChaser on all datasets and models. Particularly, on CIFAR-10,

taking VGG16/VGG16-q8 as an example, for the 5,000 initial test

cases, BET finds average more than 10,000 error-inducing inputs

Table 2: Evaluation results of Err-Num.

Err-Num

Dataset Model BET DiffChaser

CIFAR-10

VGG16/VGG16-q8 10296.2 1779.4

VGG16/VGG16-q16 2475.8 110.0

ResNet18/ResNet18-q8 7136.2 6.7

ResNet18/ResNet18-q16 280.6 0.2

Tiny-ImageNet

VGG16/VGG16-q8 3153.5 231.4

VGG16/VGG16-q16 142.8 12.8

ResNet56/ResNet56-q8 860.2 106.5

ResNet56/ResNet56-q16 88.4 3.4

ImageNet

VGG19/VGG19-q8 304.0 15.6

VGG19/VGG19-q16 185.2 0.8

ResNet50/ResNet50-q8 8611.4 360.2

ResNet50/ResNet50-q16 409.8 48.8

Table 3: Evaluation results of Label-Num.

Label-Num

Dataset Model BET DiffChaser

CIFAR-10

VGG16/VGG16-q8 5.8 2.6

VGG16/VGG16-q16 4.6 2.4

ResNet18/ResNet18-q8 6.2 0.8

ResNet18/ResNet18-q16 2.0 0.1

Tiny-ImageNet

VGG16/VGG16-q8 11.4 1.6

VGG16/VGG16-q16 2.2 0.1

ResNet56/ResNet56-q8 10.2 1.8

ResNet56/ResNet56-q16 3.8 0.6

ImageNet

VGG19/VGG19-q8 31.4 3.3

VGG19/VGG19-q16 9.2 0.7

ResNet50/ResNet50-q8 29.4 4.8

ResNet50/ResNet50-q16 26.6 0.6

Table 4: Evaluation results of SR.

SR (%)

Dataset Model BET DiffChaser

CIFAR-10

VGG16/VGG16-q8 100.0 100.0

VGG16/VGG16-q16 100.0 100.0

ResNet18/ResNet18-q8 100.0 33.6

ResNet18/ResNet18-q16 96.5 1.8

Tiny-ImageNet

VGG16/VGG16-q8 100.0 100.0

VGG16/VGG16-q16 100.0 34.0

ResNet56/ResNet56-q8 100.0 51.6

ResNet56/ResNet56-q16 100.0 14.8

ImageNet

VGG19/VGG19-q8 100.0 43.5

VGG19/VGG19-q16 96.8 11.4

ResNet50/ResNet50-q8 100.0 72.4

ResNet50/ResNet50-q16 94.2 33.2

with a fixed 30,000 query budget. This is 5.8 times more error-

inducing inputs found than DiffChaser. On Tiny-ImageNet and Im-

ageNet datasets, BET can also find significantly more error-inducing

inputs on average than DiffChaser within 30,000 queries for each

initial test case. This indicates BET could find more error-inducing

inputs than DiffChaser in a query-efficient manner.

Result of Label-Num. Among all error-inducing inputs, we eval-

uate the Label-Num of BET and DiffChaser on all datasets and

models. Particularly, BET can get significantly more Label-Num

(7 ∼ 40×) than DiffChaser. Such results show BET could explore

significantly more different decision boundaries of target models

than DiffChaser. The more different decision boundaries explored

by the testing method means the better this method is.

Result of SR. For all initial test cases, BET can find corresponding

error-inducing inputs with high SR, which reflects the effective-

ness of BET. However, we observe that DiffChaser could fail to

achieve this. For instance, DiffChaser’s SR are 33.6% and 1.8% on

ResNet18/ResNet18-q8 and ResNet18/ResNet18-q16 respectively.

This means BET is more effective than DiffChaser considering a

higher success rate in finding error-inducing inputs.

4.3 BET for Single Model Testing

Baselines. We compared BET with four state-of-the-art white-box

testing methods, i.e., ADAPT [19], two instances of DL-Fuzz [12],

and DeepXplore [31]. For all these white-box methods, ADAPT has

implemented them and released the source code. We directly use

the source code and recommended parameters for a fair comparison.

Note that, ADAPT offers two coverage strategies for them. Due

to this, we run their code under these two coverage strategies

respectively and choose the relatively better results for comparison.

Settings and metrics. Besides using the same testing settings and

comparison metrics as Section 4.1, we also add one comparison

metric (i.e., Inact-Rate) while comparing with white-box methods:

Inact-Rate. Many white-box testing techniques first preprocess

initial test cases (e.g., pixel values of images are integers in [0,255])

to lift them to the continuous domain, such as decimals within [0,1]

before generating error-inducing inputs.

However, after discretization, many error-inducing inputs would

become inactive (i.e., can no longer mislead target CNNs) due to

information loss. We use the inactivation rate (Inact-Rate) to reflect

171

BET: Black-Box Efficient Testing for Convolutional Neural Networks ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

Table 5: Evaluation of Err-Num in single model testing scenarios.

Dataset Model BET ADAPT DLFuzz-Best DLFuzz-RR DeepXplore

CIFAR-10
VGG16 16264.4 13131.4 12143.6 11427.8 10782.6

ResNet18 14272.2 11681.3 11532.4 11738.8 8804.2

Tiny-ImageNet
VGG16 8843.4 6546.2 4896.8 4696.8 3542.3

ResNet56 9016.2 8437.6 6867.8 5432.8 4982.8

ImageNet
VGG19 7059.8 3154.5 142.7 1031.7 208.6

ResNet50 7467.4 5409.5 524.7 1199.0 2116.0

Table 6: Evaluation of Label-Num in single model testing scenarios.

Dataset Model BET ADAPT DLFuzz-Best DLFuzz-RR DeepXplore

CIFAR-10
VGG16 9.0 8.3 4.0 6.9 7.4

ResNet18 8.9 8.9 2.6 7.9 8.1

Tiny-ImageNet
VGG16 48.2 41.8 3.4 16.8 12.7

ResNet56 49.6 36.6 2.9 5.8 4.6

ImageNet
VGG19 49.8 27.1 1.3 7.5 2.6

ResNet50 34.7 3.8 0.5 1.1 1.4

Table 7: Evaluation of SR (%) in single model testing scenarios.

Dataset Model BET ADAPT DLFuzz-Best DLFuzz-RR DeepXplore

CIFAR-10
VGG16 100.0 100.0 96.0 100.0 100.0

ResNet18 100.0 100.0 100.0 100.0 100.0

Tiny-ImageNet
VGG16 100.0 93.2 89.3 91.8 90.1

ResNet56 100.0 95.4 91.2 90.3 85.6

ImageNet
VGG19 100.0 100.0 52.4 92.4 40.2

ResNet50 100.0 94.0 36.6 54.8 62.4

Table 8: Evaluation of Inact-Rate (%) in single model testing scenarios.

Dataset Model BET ADAPT DLFuzz-Best DLFuzz-RR DeepXplore

CIFAR-10
VGG16 0.0 48.4 42.1 49.8 57.9

ResNet18 0.0 22.4 3.8 13.1 18.9

Tiny-ImageNet
VGG16 0.0 93.2 89.2 91.9 91.8

ResNet56 0.0 91.7 84.2 88.8 94.5

ImageNet
VGG19 0.0 100.0 52.4 92.4 40.2

ResNet50 0.0 94.0 36.6 54.8 62.4

this problem and compare the inactivation rate for all methods.

Apparently, the lower the Inact-Rate is, the better the testing result

is.

Results. Table 5, Table 6, Table 7, and Table 8 show the results of

single model testing (ST) on all datasets and models, respectively.

Overall, BET can acquire more error-inducing inputs with more

diversified labels within a fixed query/inference budget. Details are

described as follows.

Result of Err-Num. BET acquires more Err-Num than other meth-

ods on all datasets and models. Particularly, on CIFAR-10, tak-

ing VGG16 as an example, the Err-Num of BET is 3133.0 more

than that of the best white-box testing method, i.e. ADAPT. On

Tiny-ImageNet dataset, taking VGG19 as an example, the Err-Num

of BET is 2297.2 more than that of ADAPT. On ImageNet, taking

ResNet50 as an example, the Err-Num of BET are 2057.9 more than

that of ADAPT. Such results indicate BET could generate more

error-inducing inputs than white-box methods under the same

query/inference budget indicating the query efficiency.

Result of Label-Num. BET acquires the most Label-Num than

other white-box methods. Particularly, on CIFAR-10, taking VGG16

as an example, BET finds 1.1× Label-Num than ADAPT. On Tiny-

ImageNet, taking ResNet56 as an example, BET finds 1.4× Label-

Num than ADAPT. On ImageNet, taking ResNet50 as an example,

BET finds 9.1× Label-Num than ADAPT. Such results show that BET

is efficient for exploring different decision boundaries of CNNs.

Result of SR. For all initial test cases, BET can find corresponding

error-inducing inputs on different datasets and models, which re-

flects the effectiveness of BET. We can observe that BET outperforms

the baseline methods by achieving higher SR.

Result of Inact-Rate. The Inact-Rate of BET is 0.0%. The pertur-

bations are directly added on pixel values as integers, BET does not

suffer the inactivation issue. However, baseline methods, especially

the ones that use gradient-based methods suffer from this problem.

For instance, on ResNet50, the Inact-Rate of all these white-box

methods Inact-Rate are 94.0%, 36.6%, 54.8%, and 62.4%, respectively.

This is because their methods calculate error-inducing inputs in

172

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao Zhang

continuous domain and will suffer from invertible loss when trans-

forming the perturbations back to pixel values as integers.

Analysis. We note that existing white-box testing methods aim

to achieve higher neuron coverage. This metric is hard to experi-

ment with in black-box settings since there is no inner knowledge

of models for us to improve the neuron coverage or to measure

it. Therefore, we choose other metrics such as the number and

quality of error-inducing inputs found by BET and white-box test-

ing methods as baselines. The results show that for ST scenario,

BET can outperform the white-box testing methods even it is per-

formed in black-box settings. There are two main possible reasons.

(1) Achieving high neuron coverage by the baseline methods does

not definitely mean they can find more error-inducing inputs. (2)

Neuron coverage metrics may have bias as pointed out by [13, 20].

For instance, the neuron coverage metric in DeepXplore [31] pro-

motes neurons whose values are below a threshold, in order to get

higher values for better neuron coverage. It may fail to test inputs

that will cause neurons with low values.

4.4 Improving CNN Accuracy by BET

In this section, we demonstrate error-inducing inputs generated

by BET could improve the well-trained target CNN models’ accu-

racy. We perform such experiments only on CIFAR-10 and Tiny-

ImageNet datasets. First, we randomly select 500 error-inducing

inputs generated by BET on CIFAR-10 and Tiny-ImageNet train-

ing sets, respectively. There are 50,000 and 100,000 images in the

clean training set of CIFAR-10 and Tiny-ImageNet, respectively.

We augment these two training sets by randomly mixing the 500

error-inducing inputs into them. We then fine-tune all target CNNs

by 5 epochs and observe their accuracy improvement on test sets.

Note that all error-inducing inputs here are generated from the

training set which is different compared with the DeepXplore [31]

which uses the test set to generate these error-inducing inputs.

Results are shown in Table 9. we observe that the error-inducing

inputs generated by BET can improve target models’ accuracy by

2 ∼ 3% with 5 epochs of fine-tuning. We also fine-tune these well-

trained target models with only the training datasets under the

same setting and the accuracy remains the same or even decreases.

We also follow DeepXplore [31] which uses the test set to gen-

erate 500 error-inducing inputs and mix them with training set

to fine-tune the model. For Tiny-ImageNet and VGG16, we can

Table 9: Improving ACC with the error-inducing inputs of

BET. Format: ACCof original CNN→ACCof fine-tunedCNN.

Dataset Model Top-1 Acc (%) Top-5 Acc (%)

Fine-tune with the error-inducing inputs of BET

CIFAR-10
VGG16 83.26→85.58 N/A

ResNet18 85.34→87.03 N/A

Tiny-ImageNet
VGG16 51.37→54.41 75.10→75.74

ResNet56 46.42→47.88 72.34→72.66

Fine-tune with the corresponding clean training set

CIFAR-10
VGG16 83.26→83.43 N/A

ResNet18 85.34→84.78 N/A

Tiny-ImageNet
VGG16 51.37→51.94 75.10→75.21

ResNet56 46.42→45.48 72.34→72.38

improve the accuracy by 6%. However, using modified test samples

to fine-tune the model may be unfair.

4.5 Ablation Study on Efficiency-Centric Policy

We verify the function of the efficiency-centric policy (Section 3.4)

in improving query efficiency through testing. Recall the process

of our efficiency-centric policy, only one candidate is derived in

each iteration. Consequently, we consider scenarios where multi-

ple candidates are generated in each iteration by BET (disable the

efficiency-centric policy) to compare. Particularly, in each iteration,

we modify BET to generate a batch of candidates with four different

candidate numbers, i.e., 5, 15, 20, and 25. Then, we rerun BET to

evaluate the impact brought by the candidate numbers in one batch.

The experiments are conducted in ST scenarios and use the same

experiment settings as in Section 4.3.

Results are shown in Figure 4. On all datasets and models, our

BET with an efficiency-centric policy enabled (candidate number

is 1) performs better than all other compared candidate numbers.

Therefore, we conclude that under the same query budget, our

efficiency-centric policy makes sure BET could find error-inducing

inputs in a query-efficient manner. Such experiment results also

confirm our analysis of the efficiency-centric policy in Section 3.4.

a) CIFAR-10-VGG16 b) CIFAR-10-ResNet18

c) Tiny-ImageNet-VGG16 d) Tiny-ImageNet-ResNet56

e) ImageNet-VGG19 f) ImageNet-ResNet50

Figure 4: Impact of different candidate numbers. Candidate

number equals 1 denote efficiency-centric policy enabled.

5 DISCUSSION

Comparison with adversarial attacks. Adversarial attacks [4,

23, 25, 33, 42] aim to generate human unnoticed perturbations on

images as adversarial examples (AE) to effectively mislead CNNs.

173

BET: Black-Box Efficient Testing for Convolutional Neural Networks ISSTA ’22, July 18ś22, 2022, Virtual, South Korea

There are similarities between the AEs and error-inducing inputs

generated in CNN testing that can both mislead CNN classifica-

tion [9]. But the metric and effect of adversarial attacks and CNN

testing methods are quite different. First, an effective adversarial

attack aims to successfully craft one sample falling to a specific or

arbitrary classification result, but CNN testing methods aim to find

more defects of one target model. For instance, white-box testing

methods try to achieve a high neuron coverage and BET tries to

explore different decision boundaries by diversifying the labels of

error-inducing inputs found. Second, it is well-known that using

AEs generated from the training set to fine-tune the model can

increase the robustness [23] only to adversarial attacks but will

harm the model accuracy [44]. This is also different with CNN

testing methods since both DeepXplore [31] and BET have proved

that fine-tuning the target model with error-inducing inputs can

improve the accuracy.

Moreover, we do notice that using BETmay also generate AEs by

modifying its calculation goal and modification constraints. Since

studying adversarial attacks in black-box settings is not within the

scope of this paper, we leave such external research and experimen-

tation as our first future work.

Novel metrics in black-box testing. White-box model testing

methods focus on fully exploring various internal states of target

models [19]. For example, under a white-box setting, the most

common metric is to evaluate the neuron coverage to represent the

internal states of CNNs. But this metric is not suitable for black-box

testing methods since testers cannot try to improve the neuron

coverage without any inner knowledge of the neurons. Thus, we

need new metrics for black-box testing methods to understand the

inner status of the target models during the test. We think this

challenge may be solved through learning or knowledge extraction

from the error-inducing inputs acquired during the test. Thus, we

list our second future work, i.e., specifying a new metric to reflect

the inner states of target models for black-box testing.

Potential improvement of BET in white-box. BET operates in a

black-box setting by assuming there is no knowledge even on the

kernel size and structures. As indicated in Section 3.1, we approxi-

mate the kernel information by analyzing the general weakness of

common CNN models to generate error-inducing inputs. If deploy-

ing BET in a white-box setting, we can generate the perturbations

exactly according to the CNN detailed structures like kernel size

and structures. We believe that we can increase the error-inducing

inputs found with a fixed inference budget in such a white-box

setting. However, since BET is designed without any consideration

of neuron coverage, we still need to improve our method to achieve

such a goal. So our third future work is to extend the usage of BET

in a white-box scenario to not only further improve efficiency but

also achieve a high neuron coverage.

Applications of BET. The testing method of BET is not only ap-

plicable to image classification but also many other scenarios that

could adopt CNN models. For instance, we have tested CNN mod-

els for audio recognition using BET as well. The evaluation results

showed BET is effective too. Another scenario is blockchain-based

money laundering forensics [17]. Adversaries could exploit the

pseudo-anonymization feature of blockchains to hide their illegal

transactions. Neural networks are a promising solution to identify

such illegal activities in a large volume of transactions, however,

they could be bypassed by adversaries. BET could be used to promote

the robustness of such solutions and mitigate the bypass threats.

6 CONCLUSION

We propose a query-efficient black-box CNN testing method BET.

By analyzing the general weakness of CNN models, we craft con-

tinuous perturbations based on a tunable objective function to find

error-inducing inputs. Moreover, we establish an efficiency-centric

policy that can help to find these label-diversified error-inducing

inputs in a query-efficient manner. We conduct extensive exper-

iments with three well-known datasets and five CNN structures

to show that BET can outperform several state-of-the-art testing

methods in two typical testing scenarios.

ACKNOWLEDGMENTS

This work was supported partially by National Key R&D Program

of China (2021YFB2701000), National Natural Science Foundation

of China under Grant 61972224, Beijing National Research Cen-

ter for Information Science and Technology (BNRist) under Grant

BNR2022RC01006, and Ant Group through CCF-Ant Innovative Re-

search Program No. RF20210021. The work of Qi Li was supported

in part by NSFC under Grant 62132011 and BNRist under Grant

BNR2020RC01013.

REFERENCES
[1] [n.d.]. Tiny ImageNet. https://tiny-imagenet.herokuapp.com/.
[2] Francis R. Bach. 2013. Learning with Submodular Functions: A Convex Optimiza-

tion Perspective. Found. Trends Mach. Learn. 6, 2-3 (2013), 145ś373.
[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[4] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In IEEE Symposium on Security and Privacy, S&P.

[5] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, TiezhenWang, et al. 2021. TensorFlow
Lite Micro: Embedded Machine Learning for TinyML Systems. Proceedings of
Machine Learning and Systems, MLSys (2021).

[6] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. 2019. DeepFault: Fault
Localization for Deep Neural Networks. In Fundamental Approaches to Software
Engineering - 22nd International Conference, FASE.

[7] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu
Chen. 2020. DeepGini: prioritizing massive tests to enhance the robustness of
deep neural networks. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA.

[8] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In IEEE SP.

[9] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. 2019. Adversar-
ial examples are a natural consequence of test error in noise. In International
Conference on Machine Learning. PMLR, 2280ś2289.

[10] Nathan A Greenblatt. 2016. Self-driving cars and the law. IEEE spectrum (2016).
[11] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing

Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. 2018. Recent
advances in convolutional neural networks. Pattern Recognition 77 (2018), 354ś
377.

[12] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. Dlfuzz:
Differential fuzzing testing of deep learning systems. In Proceedings of the 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT.

[13] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,
and Miryung Kim. 2020. Is neuron coverage a meaningful measure for testing
deep neural networks?. In ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR.

174

https://tiny-imagenet.herokuapp.com/

ISSTA ’22, July 18ś22, 2022, Virtual, South Korea Jialai Wang, Han Qiu, Yi Rong, Hengkai Ye, Qi Li, Zongpeng Li, and Chao Zhang

[15] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and Tudor Dumitraş.
2021. A Panda? No, It’s a Sloth: Slowdown Attacks on Adaptive Multi-Exit Neural
Network Inference. In International Conference on Learning Representations, ICLR.

[16] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In 41st International Conference on Software
Engineering, ICSE.

[17] Kateryna Kolesnikova, Olga Mezentseva, and Tleuzhan Mukatayev. 2021. Analy-
sis of Bitcoin Transactions to Detect Illegal Transactions Using Convolutional
Neural Networks. In 2021 IEEE International Conference on Smart Information Sys-
tems and Technologies (SIST). 1ś6. https://doi.org/10.1109/SIST50301.2021.9465983

[18] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

[19] Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Effective white-
box testing of deep neural networks with adaptive neuron-selection strategy. In
29th ACM International Symposium on Software Testing and Analysis, ISSTA.

[20] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. 2019. Structural coverage
criteria for neural networks could be misleading. In Proceedings of the 41st In-
ternational Conference on Software Engineering: New Ideas and Emerging Results,
ICSE (NIER).

[21] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. Deepgauge:
Multi-granularity testing criteria for deep learning systems. In Proceedings of the
33rd ACM International Conference on Automated Software Engineering, ASE.

[22] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE.

[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In International Conference on Learning Representations, ICLR.

[24] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-
drák, and Andreas Krause. 2015. Lazier than lazy greedy. In Proceedings of the
AAAI Conference on Artificial Intelligence, AAAI.

[25] Seungyong Moon, Gaon An, and Hyun Oh Song. 2019. Parsimonious Black-Box
Adversarial Attacks via Efficient Combinatorial Optimization. In Proceedings of
the International Conference on Machine Learning, ICML.

[26] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis
of approximations for maximizing submodular set functionsÐI. Mathematical
programming 14, 1 (1978), 265ś294.

[27] AnhNguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE conference on computer vision and pattern recognition, CVPR.

[28] Augustus Odena, Catherine Olsson, David G. Andersen, and Ian J. Goodfellow.
2019. TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing.
In Proceedings of the 36th International Conference on Machine Learning, ICML.

[29] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep Face
Recognition. In Proceedings of the British Machine Vision Conference, BMVC.

[30] Andrew Paverd, Andrew Martin, and Ian Brown. 2014. Modelling and automati-
cally analysing privacy properties for honest-but-curious adversaries. Tech. Rep
(2014).

[31] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP.

[32] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and
Suman Jana. 2017. Nezha: Efficient domain-independent differential testing. In
2017 IEEE Symposium on security and privacy (SP). IEEE, 615ś632.

[33] Han Qiu, Tian Dong, Tianwei Zhang, Jialiang Lu, Gerard Memmi, and Meikang
Qiu. 2020. Adversarial attacks against network intrusion detection in IoT systems.
IEEE Internet of Things Journal (2020).

[34] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and
Charles K. Nicholas. 2018. Malware Detection by Eating a Whole EXE. In The
Workshops of the 32th AAAI Conference on Artificial Intelligence, AAAI Workshops.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition
Challenge. Int. J. Comput. Vis. 115, 3 (2015), 211ś252.

[36] Jasmine Sekhon and Cody Fleming. 2019. Towards improved testing for deep
learning. In Proceedings of the 41st International Conference on Software Engineer-
ing: New Ideas and Emerging Results, ICSE (NIER).

[37] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR.

[38] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
RobAshmore. 2018. Testing deep neural networks. arXiv preprint arXiv:1803.04792
(2018).

[39] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill,
and Rob Ashmore. 2019. Structural test coverage criteria for deep neural net-
works. In Proceedings of the 41st International Conference on Software Engineering:
Companion Proceedings, ICSE.

[40] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. 2018. Concolic testing for deep neural networks. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE.

[41] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations, ICLR.

[42] Chun-Chen Tu, Pai-Shun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi,
Cho-Jui Hsieh, and Shin-Ming Cheng. 2019. AutoZOOM: Autoencoder-Based
Zeroth Order Optimization Method for Attacking Black-Box Neural Networks.
In the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI.

[43] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. RobOT: Robustness-Oriented Testing for Deep Learning
Systems. In IEEE/ACM International Conference on Software Engineering, ICSE.

[44] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. 2020. Adversarial weight pertur-
bation helps robust generalization. In Annual Conference on Neural Information
Processing Systems, NeurIPS.

[45] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA.

[46] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. 2019.
DiffChaser: Detecting Disagreements for Deep Neural Networks. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI.

[47] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian, and
Bin Liang. 2017. SemFuzz: Semantics-Based Automatic Generation of Proof-of-
Concept Exploits. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, CCS.

[48] Michal Zalewski. 2017. American fuzzy lop. http://lcamtuf. coredump. cx/afl
(2017).

[49] Lingfeng Zhang, Yueling Zhang, and Min Zhang. 2021. Efficient white-box fair-
ness testing through gradient search. In ACM SIGSOFT International Symposium
on Software, ISSTA.

[50] Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang,
Jin Song Dong, and Ting Dai. 2020. White-box fairness testing through adversarial
sampling. In International Conference on Software Engineering, ICSE.

175

https://doi.org/10.1109/SIST50301.2021.9465983

	Abstract
	1 Introduction
	2 Background
	2.1 The Workflow of CNNs
	2.2 Related Work

	3 Methodology
	3.1 Key Insight
	3.2 Workflow of BET
	3.3 Tunable Objective Function
	3.4 Efficiency-Centric Policy
	3.5 Mutator

	4 Evaluation
	4.1 Experimental Setup
	4.2 Evaluation of Black-Box Differential Testing
	4.3 BET for Single Model Testing
	4.4 Improving CNN Accuracy by BET
	4.5 Ablation Study on Efficiency-Centric Policy

	5 Discussion
	6 Conclusion
	References

